etc. Axions and defects in the early Universe

Frank Steffen

Theory Group Max Planck Institute for Physics Munich, Germany

MITP Scientific Program

Jets, particle production and transport properties in collider and cosmological environments

Mainz, July 28, 2014

Astroparticle Physics

What is the energy budget of the Universe?

What are the fundamental constituents of matter?

Standard Model

Cosmology

• 2013: Planck CMB sky map

- Cosmological puzzles
 - ? Matter-Antimatter Asymmetry
 - ? Particle Identity & Origin of Dark Matter
 - ? Dark Energy = Cosmological Constant

Particle Physics

• 2012: LHC Higgs-boson discovery

- Intrinsic fine tuning problems
 - ? Hierarchy Problem (m_H << M_{Planck})
 - ? Strong CP Problem ($\Theta_{QCD} \ll I$)
 - ? Small Neutrino Masses ($m_v \ll m_H$)

\rightarrow Physics beyond the Standard Model

Properties of Dark Matter

• stable or lifetime well above

the age of our Universe

- electrically neutral
- clusters —
- cold / warm
- dissipationless
- color neutral

Dark matter

galaxies - rotation velocities

galaxy clusters - gravitational lensing

large scale structure

→ Particle Identity of Dark Matter

Dark Matter Candidates

EWIP - Extremely Weakly Interacting Particle

Cosmic Relic Abundances

• $T_R > T_D$: $I+2 \rightleftharpoons 3+X$

 $T > T_D$: X in thermal eq. with the primordial plasma T ~ T_D: X decouples as a **thermal relic** (\rightarrow B. eq.)

•
$$T_R > T_D$$
: $I+2 \rightarrow 3+X$

Dark Matter Candidates

interactions	standard particles	superpartners			
	Standard Model	Supersymmetry			
strong & electroweak	u c t y H d s b g	ũ č ť γ ď š b g			
		$ \begin{array}{c c} \widetilde{v}_{e} & \widetilde{v}_{\mu} & \widetilde{v}_{\tau} \\ \widetilde{e} & \widetilde{\mu} & \widetilde{\tau} \\ \end{array} \end{array} \begin{array}{c} \widetilde{z} \\ \widetilde{v}_{\tau} \\ \widetilde{w} \end{array} \begin{array}{c} \text{neutralino} \\ \text{WIMP} \end{array} \end{array} $			
extremely weak	Gravity	Supergravity			
	G graviton	G gravitino EVVIP			
Peccei-Quinn (PQ) Symmetry					
w¥8	axion EVVIP	axino EWIP			

Why Supersymmetry?

R-Parity Conservation

- superpotential: $W_{\text{MSSM}} \leftarrow W_{\Delta L} + W_{\Delta B}$
- non-observation of L & B violating processes (proton stability, ...)
- postulate conservation of R-Parity \leftarrow multiplicative quantum number

The lightest supersymmetric particle (LSP) is stable!!!

Dark Matter Candidates

interactions	standard particles	superpartners			
	Standard Model	Supersymmetry			
strong & electroweak	u c t y H d s b g	ũ č ť γ ď š b g			
		$ \begin{array}{c c} \widetilde{v}_{e} & \widetilde{v}_{\mu} & \widetilde{v}_{\tau} \\ \widetilde{e} & \widetilde{\mu} & \widetilde{\tau} \\ \end{array} \end{array} \begin{array}{c} \widetilde{z} \\ \widetilde{v}_{\tau} \\ \widetilde{w} \end{array} \begin{array}{c} \text{neutralino} \\ \text{WIMP} \end{array} \end{array} $			
extremely weak	Gravity	Supergravity			
	G graviton	G gravitino EVVIP			
Peccei-Quinn (PQ) Symmetry					
w¥8	axion EVVIP	axino EWIP			

Standard Thermal History of the Universe

WIMP paradigm & prospects

Axions etc.

Neutralino DM Production at the LHC

Collider Dark Matter Searches: Limits Only

Direct neutralino WIMP dark matter searches

Higgs discovery

! very impressive !

Higgs discovery

Signal strengths & Standard Model expectations

- m_h contours
- sparticle searches
- (g-2)_µ anomaly

1500

500

4

 $b \rightarrow s\gamma$

6

 $(\mu^2 + m_0^2)^{1/2}$

m_{1/2}

• m_o

18

squarks

16

 $B_s \rightarrow \mu^+ \mu^-$

M. M.

Μ

8 10 12 Log₁₀(Q/1 GeV)

sleptons

14

Standard Model after the Higgs discovery

Dark Matter Candidates

New Class → Extremely Weakly Interacting Particles (EWIPs)

[Cremmer, Ferrara, Girardello, Van Proeyen, '83]

$$\begin{split} & \textbf{Supergravity} \left(\textbf{N=I}, \textbf{d=4}\right) \\ \frac{1}{e} \mathcal{L} = -\frac{M_{P}^{2}}{2} R + g_{ij} * \mathcal{D}_{\mu} \phi^{i} \mathcal{D}^{\mu} \phi^{*j} - \frac{1}{2} g^{2} \left[(\text{Ref})^{-1} \right]^{ab} D_{a} D_{b} \\ & + i g_{ij} * \overline{\chi}_{L}^{j} \gamma^{\mu} \mathcal{D}_{\mu} \chi_{L}^{i} + \epsilon^{\mu\nu\rho\sigma} \overline{\psi}_{L\mu} \gamma_{\nu} \mathcal{D}_{\rho} \psi_{L\sigma} \\ & -\frac{1}{4} \text{Re} f_{ab} F_{\mu\nu}^{a} F^{b,\mu\nu} + \frac{1}{8} \epsilon^{\mu\nu\rho\sigma} \text{Im} f_{ab} F_{\mu\nu}^{a} F_{\rho\sigma}^{b} \\ & + \frac{i}{2} \text{Re} f_{ab} \overline{\chi}^{a} \gamma^{\mu} \mathcal{D}_{\mu} \lambda^{b} - e^{-1} \frac{1}{2} \text{Im} f_{ab} \mathcal{D}_{\mu} \left[e \overline{\chi}_{R}^{a} \gamma^{\mu} \lambda_{R}^{b} \right] \\ & + \left[-\sqrt{2} g \partial_{i} D_{a} \overline{\chi}^{a} \chi_{L}^{i} + \frac{1}{4} \sqrt{2} g \left[(\text{Ref})^{-1} \right]^{ab} \partial_{i} f_{bc} D_{a} \overline{\chi}^{c} \chi_{L}^{i} \\ & + \frac{i}{16} \sqrt{2} \partial_{i} f_{ab} \overline{\chi}^{a} [\gamma^{\mu}, \gamma^{\nu}] \chi_{L}^{i} F_{\mu\nu}^{b} - \frac{1}{2M_{P}} g D_{a} \overline{\chi}_{R}^{a} \gamma^{\mu} \psi_{\mu} \\ & - \frac{i}{2M_{P}} \sqrt{2} g_{ij*} \mathcal{D}_{\mu} \phi^{*j} \overline{\psi}_{\nu} \gamma^{\mu} \gamma^{\nu} \chi_{L}^{i} + \text{h.c.} \right] \\ & \textbf{Planck scale} \left[\frac{i}{4M_{P}^{2}} \mathcal{W}^{*} \overline{\psi}_{R\mu} [\gamma^{\mu}, \gamma^{\nu}] \psi_{L\nu} + \frac{1}{2M_{P}} \sqrt{2} D_{i} W \overline{\psi}_{\mu} \gamma^{\mu} \chi_{L}^{i} \\ & + \frac{1}{2} \mathcal{D}_{i} D_{j} W \overline{\chi}_{L}^{ci} \chi_{L}^{j} + \frac{1}{4} g^{ij*} D_{j*} W^{*} \partial_{i} f_{ab} \overline{\lambda}_{R}^{a} \lambda_{L}^{b} + \text{h.c.} \right] \\ & - e^{K/M_{P}^{2}} \left[g^{ij*} (D_{i} W) \left(D_{j*} W^{*} \right) - 3 \frac{|W|^{2}}{M_{P}^{2}} \right] + \mathcal{O}(M_{P}^{-2}) . \end{split}$$

Supersymmetric Hadronic Axion Model

$$\mathcal{L}_{PQ}^{int} = -\frac{\sqrt{2}\alpha_s}{8\pi f_{PQ}} \int d^2\theta A W^b W^b + h.c.$$
Peccei-Quinn (PQ) scale
$$\frac{a_{axion} a_{xion} a_{xion}}{A = (\sigma + ia)/\sqrt{2} + \sqrt{2}\theta\tilde{a} + F_A\theta\theta} PQ$$

$$\frac{g|uino}{W^b = \tilde{g}^b + D^b\theta - \sigma^{\mu\nu}\theta G^b_{\mu\nu} + i\theta\theta\sigma^{\mu}D_{\mu}\bar{g}^b \text{ field strength}}{\int squark}$$

$$D^b = -g_s \sum_{\tilde{q}} \tilde{q}^* t^b \tilde{q} \qquad \alpha_s = g_s^2/4\pi$$

$$\mathcal{L}_{PQ}^{int} = \frac{\alpha_s}{8\pi f_{PQ}} \left[\sigma \left(G^{b\,\mu\nu}G^b_{\mu\nu} - 2D^bD^b - 2i\bar{g}^b_M\gamma^{\mu}D_{\mu}\bar{g}^b_M \right) + a \left(G^{b\,\mu\nu}\tilde{G}^b_{\mu\nu} + 2\bar{g}^b_M\gamma^{\mu}\gamma^5D_{\mu}\tilde{g}^b_M \right) - i\bar{a}_M \frac{[\gamma^{\mu}, \gamma^{\nu}]}{2}\gamma^5 \tilde{g}^b_M G^b_{\mu\nu} + 2\bar{a}_M D^b \tilde{g}^b_M \right]$$

Supersymmetric Hadronic (KSVZ) Axion Model

KSVZ [Kim '79; Shifman, Vainshtein, Zakharov '80]

Constraints on the Peccei-Quinn (PQ) scale f_{PQ}

Bounds from Axion Searches Cosmological Axion Bounds Astrophysical Axion Bounds

Extremely Weakly Interacting Particles (EWIPs)

well-motivated candidates for **dark matter**

galaxies - rotation velocities

galaxy clusters - gravitational lensing

large scale structure

Axions etc.

259

High Reheating Temperature Scenarios

High Reheating Temperature Scenarios

Cosmic Relic Abundances

• $T_R > T_D$: $I+2 \rightleftharpoons 3+X$

 $T > T_D$: X in thermal eq. with the primordial plasma T ~ T_D: X decouples as a **hot thermal relic**

•
$$T_R > T_D$$
: $I+2 \rightarrow 3+X$

Axions etc.

Steffen

[Graf, FDS, 1008.4528]

Thermal Axion Production in the Hot QGP

Axion Dark Matter

Axion Condensate: CDM

$$\begin{split} \Omega_a^{\rm MIS} h^2 &\sim 0.15 \, \theta_i^2 (f_{\rm PQ}/10^{12}\,{\rm GeV})^{7/6} \\ & [\dots, \text{Sikivie}, \text{'08; Kim, Carosi, '08, ...]} \end{split}$$

Steffen

Axion Dark Matter

Axion Dark Matter

Axino LSP Case

Axino LSP Case

Upper Limits on the Reheating Temperature T_R

Thermal Leptogenesis requires T > 10⁹ GeV

Axions etc.

Steffen

High Reheating Temperature Scenarios

Dark Radiation

• Radiation content of the Universe at BBN and later

$$\rho_{\rm rad} = \begin{bmatrix} 1 + \frac{7}{8} \left(N_{\nu} + \Delta N_{\rm eff} \right) \left(\frac{T}{T_{\nu}} \right)^4 \end{bmatrix} \rho_{\gamma} \overset{\text{photon energy}}{\leftarrow} density$$

$$\rho_{\gamma} \overset{\text{momental}}{\leftarrow} density$$

$$\rho_{\gamma} \overset{\text{photon energy}}{\leftarrow} density$$

$$\rho_{\gamma} \overset{\text{momental}}{\leftarrow} density$$

$$\rho_{\gamma} \overset{\text{photon energy}}{\leftarrow} density$$

$$\rho_{\gamma} \overset{\text{photon energy}}{\leftarrow} density$$

- More radiation \rightarrow faster expansion \rightarrow more efficient BBN of ⁴He
- More radiation \rightarrow later mat-rad eq \rightarrow visible in CMB + LSS

Data	p.m./mean	upper limit	
$Y_{\rm p}^{\rm IT}$ [1] + [D/H]_{\rm p} [49]	0.76	$< 1.97~(3\sigma)$	
$Y_{\rm p}^{\rm Av}$ [2] + [D/H]_{\rm p} [49]	0.77	$< 3.53 (3\sigma)$	
CMB + HPS + HST [6]	1.73	$< 3.59 (2\sigma)$	•
Planck+WP+highL+BAO [8]	0.25	$< 0.79 \ (2\sigma)$	CMB + LSS
$Planck+WP+highL+H_0+BAO [8]$	0.47	$< 0.95 \ (2\sigma)$)

BBN

CMB + LSS

Axions etc.

43

[Planck Collaboration, 1303.5076]

Planck 2013 results XVI: Cosmological Parameters

Combining *Planck*, *WMAP* polarization and the high- ℓ experiments gives

 $N_{\rm eff} = 3.36^{+0.68}_{-0.64}$ (95%; *Planck*+WP+highL). (74)

The marginalized posterior distribution is given in Fig. 27 (black curve).

Increasing N_{eff} at fixed θ_* and z_{eq} necessarily raises the expansion rate at low redshifts too. Combining CMB with distance measurements can therefore improve constraints (see Fig. 27) although for the BAO observable $r_{\text{drag}}/D_V(z)$ the reduction in both r_{drag} and $D_V(z)$ with increasing N_{eff} partly cancel. With the BAO data of Sect. 5.2, the N_{eff} constraint is tightened to

$$N_{\rm eff} = 3.30^{+0.54}_{-0.51}$$
 (95%; *Planck*+WP+highL+BAO). (75)

Our constraints from CMB alone and CMB+BAO are compatible with the standard value $N_{\text{eff}} = 3.046$ at the 1 σ level, giving no evidence for extra relativistic degrees of freedom.

Since N_{eff} is positively correlated with H_0 , the tension between the *Planck* data and direct measurements of H_0 in the base Λ CDM model (Sect. 5.3) can be reduced at the expense of high N_{eff} . The marginalized constraint is

$$N_{\rm eff} = 3.62^{+0.50}_{-0.48} \quad (95\%; Planck+WP+highL+H_0). \tag{76}$$

For this data combination, the χ^2 for the best-fitting model allowing N_{eff} to vary is lower by 5.0 than for the base $N_{\text{eff}} = 3.046$ model. The H_0 fit is much better, with $\Delta \chi^2 = -4.0$, but there is no strong preference either way from the CMB. The low- ℓ temperature power spectrum does mildly favour the high N_{eff} model ($\Delta \chi^2 = -1.6$) since N_{eff} is positively correlated with n_s (see Fig. 24) and increasing n_s reduces power on large scales. The rest of the *Planck* power spectrum is agnostic ($\Delta \chi^2 = -0.5$), while the high- ℓ experiments mildly disfavour high N_{eff} in our fits ($\Delta \chi^2 = 1.3$). Further including the BAO data pulls the central value downwards by around 0.5 σ (see Fig. 27):

$$N_{\rm eff} = 3.52^{+0.48}_{-0.45}$$
 (95%; *Planck*+WP+highL+H₀+BAO). (77)

The χ^2 at the best-fit for this data combination ($N_{\text{eff}} = 3.37$) is lower by 3.6 than the best-fitting $N_{\text{eff}} = 3.046$ model. While the high N_{eff} best-fit is preferred by *Planck*+WP ($\Delta\chi^2 = -3.3$) and the H_0 data ($\Delta\chi^2 = -2.8$ giving an acceptable $\chi^2 = 2.4$ for this data point), it is disfavoured by the high- ℓ CMB data ($\Delta\chi^2 = 2.0$) and slightly by BAO ($\Delta\chi^2 = 0.4$). We conclude that the tension between direct H_0 measurements and the CMB and BAO data in the base Λ CDM can be relieved at the cost of additional neutrino-like physics, but there is no strong preference for this extension from the CMB damping tail.

$\Delta N_{eff} = 3.62 + 0.5 - 3.046 = 1.074 @ 95\% CL$

Dark Radiation → SUSY + PQ

• Axions from decays of thermal saxions \rightarrow extra radiation

$$\mathcal{L}_{PQ}^{kin} = \left(1 + \frac{\sqrt{2}x}{v_{PQ}}\sigma\right) \left[\frac{1}{2}\partial^{\mu}a\partial_{\mu}a + \frac{1}{2}\partial^{\mu}\sigma\partial_{\mu}\sigma + i\bar{a}\gamma^{\mu}\partial_{\mu}\tilde{a}\right] + \dots$$

$$x = \sum_{i} \frac{q_{i}^{3}v_{i}^{2}}{v_{PQ}^{2}}, \quad v_{PQ} = \sqrt{\sum_{i} v_{i}^{2}q_{i}^{2}} \qquad f_{PQ} = \sqrt{2}v_{PQ}$$
• $\Delta N_{eff} \propto \left(\frac{100 \text{ GeV}}{m_{\sigma}}\right)^{1/2} \left(\frac{f_{PQ}}{10^{11} \text{ GeV}}\right) \left(\frac{Y_{\sigma}^{eq/TP}}{10^{-3}}\right)$
[Graf, FDS, '12]

High Reheating Temperature Scenarios

Gravitino Dark Matter Scenario

- Gravitino is the stable LSP (R-parity conservation is assumed)
- Axino is heavy & unstable (decays prior to LOSP decoupling)
- Saxion decays into axion dark radiation
- Axion contributes to dark radiation and dark matter
- Sneutrino NLSP case allows for thermal leptogenesis

Gravitino Dark Matter Scenario

Axions etc.

1

 $T_{
m R} \,\, [{
m GeV}]$

Gravitino Dark Matter Scenario

Gravitino LSP Case with a Charged Slepton NLSP

Particle Physics

• 2016: Large Hadron Collider (14 TeV) sneutrino discovery at ATLAS & CMS

 $m_{sneutrino} = 415 \text{ GeV}$

- Intrinsic fine tuning problems
 - Hierarchy Problem (m_H << M_{Planck})
 supersymmetry
 Strong CP Problem (Θ_{QCD} << I)
 - Peccei-Quinn symmetry
 - Small Neutrino Masses (m_v << m_H) See-saw mechanism

Cosmology

• 2013: Planck sky map of the CMB radiation

• Cosmological puzzles

Matter-Antimatter Asymmetry
 thermal leptogenesis
 Particle Identity & Origin of Dark Matter
 thermally produced gravitinos

7 Dark Energy = Cosmological Constant

Axion Dark Matter Scenario

- Axino is a very light stable LSP (R-parity conservation)
- Gravitino is the NLSP and decays into axion & axino dark radiation
- Saxion decays into axion dark radiation
- Axion contributes to dark radiation and dark matter
- Stau NLSP case & thermal leptogenesis is possible

Lee-Weinberg Curve for Axions

Axion Dark Matter Scenario

Axions etc.

Axion Dark Matter Scenario

Axions etc.

Steffen

maxino, **m**gravitino < **m**stau

[Freitas, Tajuddin, FDS, Wyler, '09]

Axion Dark Matter Scenario

CHArged Massive Particles (CHAMPs)

additional detector material EWIP Key questions on CHAMP properties

Stable? Lifetime? Decay products?

New detector concepts

- → stop/collect CHAMPs
- → study CHAMP decays

Particle Physics

• 2016: Large Hadron Collider (14 TeV) stau discovery at ATLAS & CMS

- Intrinsic fine tuning problems
 - Hierarchy Problem (m_H << M_{Planck}) supersymmetry
 Strong CP Problem (Θ_{QCD} << I) Peccei-Quinn symmetry
 Small Neutrino Masses (m_V << m_H) See-saw mechanism

Cosmology

• 2013: Planck sky map of the CMB radiation

• Cosmological puzzles

Matter-Antimatter Asymmetry
 thermal leptogenesis
 Particle Identity & Origin of Dark Matter
 axion condensate
 Dark Energy = Cosmological Constant

Conclusions

- Cosmological observations still call for new physics
- Hierachy problem & strong CP problem \rightarrow SUSY axion models
- EWIPs are a new well-motivated class of particles
- EWIP can explain dark matter and dark radiation (?)
- High-reheating temperature scenarios \rightarrow thermal leptogenesis
 - \rightarrow Gravitino dark matter with sneutino LOSPs
 - \rightarrow Axion dark matter with stau LOSPs
- Various cosmological aspects & promising collider propects