Dark matter, black holes, and the Fermi-LAT GeV excess

Jessie Shelton

University of Illinois, Urbana-Champaign

Mainz Institute for Theoretical Physics July 18, 2014

 Goodenough & Hooper (2011): excess over power-law background models in the Galactic Centre

time

- Goodenough & Hooper (2011): excess over power-law background models in the Galactic Centre
- Independent analyses by multiple groups with increasingly sophisticated methodology find similar results (Abazajian & Kaplinghat (2012, 2014), Gordon & Macias (2013), Fermi Collaboration (?), ...)

time

- Goodenough & Hooper (2011): excess over power-law background models in the Galactic Centre
- Independent analyses by multiple groups with increasingly sophisticated methodology find similar results (Abazajian & Kaplinghat (2012, 2014), Gordon & Macias (2013), Fermi Collaboration (?), ...)

Hooper & Slatyer (2013) establish spatial extent out to ~10° from the GC

- Goodenough & Hooper (2011): excess over power-law background models in the Galactic Centre
- Independent analyses by multiple groups with increasingly sophisticated methodology find similar results (Abazajian & Kaplinghat (2012, 2014), Gordon & Macias (2013), Fermi Collaboration (?), ...)

time

- Hooper & Slatyer (2013) establish spatial extent out to ~10° from the GC
- Daylan, Finkbeiner, Hooper, Linden,
 Portillo, Rodd, & Slatyer (2014): increased
 angular resolution tightens DM case

The Galactic Centre Excess

Daylan, Finkbeiner, Hooper, Linden, Portillo, Rodd, Slatyer

Mass, cross section, final states:

Daylan, Finkbeiner, Hooper, Linden, Portillo, Rodd, Slatyer

A cautionary note

- Known astrophysical objects with similar energy cutoff: millisecond pulsars
- Energy spectrum?
- Spatial distribution?

- Need novel luminosity distribution to avoid over-predicting resolved MSPs at high latitude
 - By this argument: < 5-10 % of excess

Mediating annihilations in the GC

Mediating annihilations in the GC

Mediating annihilations in the GC

New mediators

 $m_X > m_\chi$

- annihilation, direct detection amenable to contact operator description
- collider signals may require explicit introduction of new d.o.f.
- pseudoscalar X requires
 2HDM or similar

New mediators

 $m_X > m_\chi$

- annihilation, direct detection amenable to contact operator description
- collider signals may require explicit introduction of new d.o.f.
- pseudoscalar X requires
 2HDM or similar

 $m_X < m_\chi$

- dominant DM annihilation mode is to mediators
- lifetime of mediators bounded by BBN

New mediators

Final states in cascade annihilations

- SM singlets couple through portals:
 - Higgs: $\lambda |H|^2 s^2$
 - hypercharge: $\epsilon B_{\mu\nu}V^{\mu\nu}$

• gluons:
$$\frac{1}{M} s G^{\mu\nu} G_{\mu\nu}, \ \frac{1}{M} a G^{\mu\nu} \widetilde{G}_{\mu\nu}$$

• ..

Cascade annihilation spectra

Portals into the SM: Hypercharge

$$\mathcal{L}_{int} = \epsilon V_{\mu\nu} B^{\mu\nu}$$

- kinetically mixed U(1) gets mass from dark SSB
- for $m \lesssim 20$ GeV, coupling to SM fermions approximately proportional to charge

Portals into the SM: Higgs

$$\mathcal{L}_{int} = \epsilon s^2 |H|^2$$

- s inherits Yukawa couplings through Higgs mixing after SSB
- radiative corrections: HDECAY for branching fractions
- fit results also apply to pseudoscalar a

Portals into the SM: gluons

$$\mathcal{L}_{int} = \frac{1}{\Lambda} \phi G_{\mu\nu} G^{\mu\nu}, \ \frac{1}{\Lambda} a G_{\mu\nu} \tilde{G}^{\mu\nu}$$

- new colored matter at high scales
- similar operators with electroweak field strengths can generate gamma ray boxes: potentially interesting signal for future

Many ways to fit a spectrum

$$m_{DM} = 22 \,\mathrm{GeV}$$

 $m_{med} = 12 \,\mathrm{GeV}$
 $\langle \sigma v \rangle = 3.4 \times 10^{-26} \mathrm{cm}^3/\mathrm{s}$

$$m_{DM} = 40 \,\mathrm{GeV}$$

 $m_{med} = 20 \,\mathrm{GeV}$
 $\langle \sigma v \rangle = 4.4 \times 10^{-26} \mathrm{cm}^3/\mathrm{s}$

$$m_{DM} = 60 \,\mathrm{GeV}$$

 $m_{med} = 40 \,\mathrm{GeV}$
 $\langle \sigma v \rangle = 6.1 \times 10^{-26} \mathrm{cm}^3/\mathrm{s}$

Consider fermionic DM and a dark vector mediator:

Requiring $\Omega h^2 = 0.11$ determines α_D

 $\alpha_D(10^{-3})$

Consider fermionic DM and a dark vector mediator:

• LUX then constrains admissible kinetic mixing

 $\log_{10} \epsilon$

Collider constraints

- Strongest bounds: quarkonia
- LHC signals: exotic Higgs decays?
- competiveness with LUX depends on structure of dark Higgs sector, model dependent

Curtin, Essig, Gori, Jaiswal, Katz, T. Liu, Z. Liu, McKeen, JS, Strassler, Surujon, Tweedie, Zhong

Another sample model

Consider scalar DM annihilating to a dark scalar:

$$\begin{split} V(\phi, s, H) = &V(|\phi|^2) + V(|H|^2) + \frac{\lambda_4}{2} |\phi|^2 s^2 \\ &+ \epsilon s^2 |H|^2 + \left(-\frac{\mu_s^2}{2} s^2 + \frac{\lambda_s}{4!} s^4 \right) \end{split}$$

- Let s get a VEV; induces Higgs mixing
- After SSB: $\lambda_4, m_s, \epsilon, \sigma$
- Freezeout sets λ_4 (insensitive to $y\equiv\sigma/m_s$)

Another sample model

Consider scalar DM annihilating to a dark scalar:

Another sample model

- In fact, the most stringent limits come from exotic Higgs decays
- Constraint on total exotic branching fraction assuming SM production
- (direct observation will be hard at LHC)

And another sample model

Scalar DM annihilating to a dark scalar, no condensation:

- Direct detection proceeds at one loop: no signals
- Higgs portal coupling could mediate $h \rightarrow 4g$

 $\lambda_4 \left(10^{-2} \right)$

 Many proposed models predict signals right around the corner at LHC and/or LUX (and/or flavour), but others (e.g. ours) do not

- Many proposed models predict signals right around the corner at LHC and/or LUX (and/or flavour), but others (e.g. ours) do not
- Gamma-ray signals from other objects (e.g. dwarfs) could add weight to DM interpretation, but statistically difficult in Fermi

- Many proposed models predict signals right around the corner at LHC and/or LUX (and/or flavour), but others (e.g. ours) do not
- Gamma-ray signals from other objects (e.g. dwarfs) could add weight to DM interpretation, but statistically difficult in Fermi
- Antiprotons potentially powerful discriminant, but systematics are challenging

- Many proposed models predict signals right around the corner at LHC and/or LUX (and/or flavour), but others (e.g. ours) do not
- Gamma-ray signals from other objects (e.g. dwarfs) could add weight to DM interpretation, but statistically difficult in Fermi
- Antiprotons potentially powerful discriminant, but systematics are challenging
- DM gamma ray signal from Sagittarius A*

Black hole-induced density spikes

- A black hole growing adiabatically in an NFW halo gives rise to a steep spike:
 - inside zone of influence $r_b = 0.2 \times \frac{M_{BH}}{v_c^2}$
 - density rises like $\left(\frac{r_b}{r}\right)^{\gamma_{sp}}$
 - where spike index depends on NFW profile $\gamma_{sp} = \frac{9 2\gamma_c}{4 \gamma_c}$
 - when annihilation becomes important, $r_{in} : \rho(r) = \frac{m}{\langle \sigma v \rangle \tau}$
 - spike levels out to a shallow $\left(\frac{r_{in}}{r}\right)^{1/2}$

A fiducial model for the spike

assume 35.25 GeV reference DM candidate, annihilating to bb

Parametric dependence

- steep power law \implies strong dependence on inputs
 - M_{BH}
 - v_0
 - inner NFW index γ_c
 - DM properties: $\rho_{ann} = \frac{m}{\langle \sigma v \rangle \tau}$
- potential DM signal allows (relatively) precise statements: γ_c , ρ_{ann}

Parametric dependence

Stellar Heating

- dense stellar population in Galactic nucleus could alter spike:
 - heating
 - enhanced DM capture by BH
 - limiting spike: $\gamma_{sp} = 1.5$
- existence of such a stellar cusp still unsettled

The spiky takeaway

- You can't have both
 - a DM interpretation of the excess
 - a canonical adiabatic spike
- GeV-range spectrum of Sgr A* is interestingly close to a heated spike + halo
- DM interpretations of excess don't harmonize well with other spiky scenarios (cores, sudden)
- Discovery of e.g. a pulsar associated with 2FGL J1745.6-2858 would significantly weaken case for DM spike

Conclusions

• GC excess, if due to DM, suggests new interactions

 Minimal cascade possibilities: fermionic DM + vector; scalar DM + (pseudo-)scalar mediators; make more natural but less minimal models by adding additional new species

• Cascade annihilations:

- parametrically "explain" lack of deviations from SM
- ...at the cost of making terrestrial confirmation harder
- weakest couplings may be best constrained astrophysically
- Milky Way's SMBH spike adds point-like contribution to DM gamma-ray signal
 - Pick at least one: not DM, or: no canonical adiabatic spike

Backup

Cosmological history:

• V still decays long before BBN

• For $m_V \gtrsim \text{GeV}$, values of mixing down to $\epsilon \sim 10^{-12}$ are safe

Cosmological history:

Thermal decoupling?

• estimate thermal decoupling at:

$$T_{\rm dec}^2 \approx (10 \,{\rm MeV})^2 \left(\frac{0.003}{\alpha_D}\right) \left(\frac{m_V}{10 \,{\rm GeV}}\right)^4 \\ \times \left(\frac{20 \,{\rm GeV}}{m_\chi}\right) \left(\frac{10^{-4}}{\epsilon}\right)^2 \left(\frac{4}{\sum g_i Q_i^2}\right)^4$$

- assume reheating yields $T_{DM} = T_{SM}$ initially
- provided $T_{fo} > T_{\chi PT}$, relatively insensitive