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The Galactic Centre Excess

Spatially uniform
continuum spectrum
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Mass, cross section, final states:
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A cautionary note

stacked MSPs
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® Need novel luminosity distribution to avoid over-predicting
resolved MSPs at high latitude

® By this argument: < 5-10 % of excess

Hooper, Cholis, Linden, Siegal-Gaskins, Slatyer
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Mediating annihilations in the GC
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New mediators

v X

T

SM SM

mx > My

annihilation, direct detection
amenable to contact operator
description

collider signals may require

explicit introduction of new
d.o.f.

pseudoscalar X requires
2HDM or similar

mx < My

dominant DM annihilation
mode is to mediators

lifetime of mediators bounded
by BBN



New mediators

. . .
“— —>

N S sm
Thermal history fixes this AN

coupling

The coupling to the SM can
/e be parametrically small

Pospeloy, Ritz



Final states in cascade annihilations

® S5M singlets couple through
® Higgs: \ /7|5
® hypercharge:¢3,, V"""
1 1

® gluons: MSGWGW’ MaG“”éW
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Cascade annihilation spectra
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Portals into the SM:

Hypercharge
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kinetically mixed U(1) gets
mass from dark SSB

for m < 20 GeV, coupling
to SM fermions
approximately proportional
to charge
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Portals into the SM:

Higgs
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s inherits Yukawa couplings
through Higgs mixing after
SSB

radiative corrections:
HDECAY for branching
fractions

fit results also apply to
pseudoscalar a
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Portals into the SM:

gluons
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new colored matter at high
scales

similar operators with
electroweak field strengths
can generate gamma ray
boxes: potentially interesting
signal for future

Martin, JS, Unwin



Many ways to fit a spectrum

mpyp = 22 GeV
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A sample model

Consider fermionic DM and a dark vector mediator:

Requiring {0/ = .11 determines o
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A sample model

Consider fermionic DM and a dark vector mediator:

® | UX then constrains
admissible kinetic mixing

Martin, JS, Unwin



A sample model

107!
Collider constraints

E ® Strongest bounds: quarkonia

® | HC signals: exotic Higgs
decays!?

v 107

® competiveness with LUX
depends on structure of dark
Higgs sector, model dependent
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Curtin, Essig, Gori, Jaiswal, Katz, T. Liu, Z. Liu,
McKeen, JS, Strassler, Surujon, Tweedie, Zhong



Another sample model

Consider scalar DM annihilating to a dark scalar:

A
Vg, s, H) =V(I9]*) + V(IHP?) + 5|l

2
21 1712 _Hs 2 As 4
+ es“|H| +( Tk +—4!s)

® |Lets getaVEV;induces Higgs
mixing
® After SSB: M\4, M., €, 0

® Freezeout sets A\ (insensitive
to y=o0/ms)
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Martin, JS, Unwin



Another sample model

Consider scalar DM annihilating to a dark scalar:
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® Direct detection less
constraining than in vector
case (and o< y/")

Martin, JS, Unwin



Another sample model

n fact, the most stringent
imits come from exotic
Higgs decays

Constraint on total exotic
branching fraction
assuming SM production

(direct observation will be
hard at LHC)
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And another sample model

Scalar DM annihilating to a dark scalar, no condensation:

® Direct detection proceeds at
one loop: no signals

® Higgs portal coupling could
mediate /2 — 4g

Martin, JS, Unwin
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Many proposed models predict signals right around the
corner at and/or (and/or ), but others
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from other objects (e.g. dwarfs) could
add weight to DM interpretation, but statistically difficult
in Fermi

potentially powerful discriminant, but
systematics are challenging

DM gamma ray signal from



Black hole-induced density spikes

® A black hole growing adiabatically in an NFWV halo
gives rise to a steep

. . Mpn
® inside zone of influence 7, = 0.2 X 5
0
VYsp
® density rises like (@>
-
g 9 — 27,
® where spike index depends on NFW profile 75, = I
® when annihilation becomes important, r;,, : p(r) = ; m>
ov)T

Tin)l/Q

® spike levels out to a shallow (
-

Gondolo and Silk
Vasiliev



A fiducial model for the spike

CDM 1nner halo plus spike: best tit parameters
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assume 35.25 GeV reference DM candidate, annihilating to bb

Fields, Shapiro, JS



Parametric dependence

® steep power law strong dependence on
inputs

® Mpp

® U

® inner NFWV index "¢
m

® DM properties: Pann =

(ov)T
® potential DM signal allows (relatively) precise
statements: ¢, Pann



(I)spike/ (I)halo (inner 1 0)

Parametric dependence
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The point source at the centre of the galaxy
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The point source at the centre of the galaxy
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The point source at the centre of the galaxy

canonical adiabatic spike: s, = 2.36
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The point source at the centre of the galaxy

E* d®/dE (107° photons GeV/cm~ sec)
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Stellar Heating

® in Galactic nucleus could
alter spike:

o
® enhanced DM capture by BH
® |imiting spike:

® existence of such a stellar cusp

Merritt
Primack and Gnedin



The point source at the centre of the galaxy

non-equilibrium spike: 5, = 1.8
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The spiky takeaway

You can’t have
® 2 interpretation of the excess

® a

GeV-range spectrum of Sgr A* is interestingly close to a

DM interpretations of excess don’t harmonize well with
other spiky scenarios (cores, sudden)

Discovery of e.g. a pulsar associated with
would significantly weaken case for DM spike



Conclusions

® GC excess, i due to DM, suggests

° cascade possibilities: fermionic DM + vector; scalar DM +
(pseudo-)scalar mediators; make more natural but less minimal models
by adding additional new species

® parametrically “explain” lack of deviations from SM
® _.at the cost of making terrestrial confirmation harder
® weakest couplings may be best constrained

® Milky Way’s adds point-like
contribution to DM gamma-ray signal

® Pick at least one: or:
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A sample model

Cosmological history:

® V still decays long before BEIN

my (GeV)

® Formy = GeV,values of mixing down to are safe



A sample model

Cosmological history:

~o_

Thermal decoupling?

® estimate thermal decoupling at:

0.003 my  \4
2 a4 2
dee ~ (10MeV) ( ap ) (10(}eV)

() () (o)

® assume reheating yields 7'y, = 15/ initially

® provided 1, > I pr, relatively insensitive



