MITP Program: Probing the TeV scale and beyond JGU Mainz, July 2014

Toward Full LHC Coverage of Natural Supersymmetry

Yevgeny Kats

Weizmann Institute

Work with Jared Evans, David Shih, Matt Strassler

arXiv:1310.5758

LHC has excluded many "motivated" and simplified models of SUSY.

Only a selection of available mass limits Probe *up to* the quoted mass limit

LHC has excluded many "motivated" and simplified models of SUSY. But...

- ... they only search for what they can discover/exclude
- ... there are many possible superpartner spectra

ways to violate *R*-parity ways to extend the MSSM

To what extent has the LHC excluded SUSY in general?

LHC has excluded many "motivated" and simplified models of SUSY. But...

- ... they only search for what they can discover/exclude
- ... there are many possible superpartner spectra

ways to violate *R*-parity

ways to extend the MSSM

To what extent has the LHC excluded *natural* SUSY in general?

Main motivation for SUSY at LHC EW symmetry breaking scale without fine tuning

$$m_H^2 \approx -2\left(|\mu|^2 + m_{H_u}^2\right)$$

$$125 \text{ GeV} \qquad \text{SUSY} \qquad \text{soft}$$

LHC has excluded many "motivated" and simplified models of SUSY. But...

- ... they only search for what they can discover/exclude
- ... there are many possible superpartner spectra

ways to violate *R*-parity

ways to extend the MSSM

To what extent has the LHC excluded *natural* SUSY in general?

LHC has excluded many "motivated" and simplified models of SUSY. But...

- ... they only search for what they can discover/exclude
- ... there are many possible superpartner spectra

ways to violate *R*-parity

ways to extend the MSSM

To what extent has the LHC excluded *natural* SUSY in general?

Stops (and gluinos) contribute to $m_{H_u}^2$ at 1 loop (2 loops).

LHC has excluded many "motivated" and simplified models of SUSY. But...

- ... they only search for what they can discover/exclude
- ... there are many possible superpartner spectra

ways to violate *R*-parity

ways to extend the MSSM

To what extent has the LHC excluded *natural* SUSY in general?

Stops (and gluinos) contribute to $m_{H_u}^2$ at 1 loop (2 loops).

Has the LHC *done all it could* to discover/exclude *natural* SUSY? If holes exist, can new search strategies help?

GENERALITY

Any (motivated / not yet motivated) extension of the MSSM, any spectrum (in particular, any LSP), any RPV, etc.

GENERALITY

Any (motivated / not yet motivated) extension of the MSSM, any spectrum (in particular, any LSP), any RPV, etc.

RESTRICTIONS

• LSP below 400 GeV (otherwise higgsinos are unnaturally heavy)

GENERALITY

Any (motivated / not yet motivated) extension of the MSSM, any spectrum (in particular, any LSP), any RPV, etc.

RESTRICTIONS

- LSP below 400 GeV (otherwise higgsinos are unnaturally heavy)
- **Gluino kinematically accessible** (otherwise unexcluded examples known) For 20 fb⁻¹ @ 8 TeV LHC:

$\tilde{g}\tilde{g}$ events		500	3	
$m_{ ilde{g}}$	MOST INTERESTING TO ASK ABOUT	1 TeV	1.6 TeV	IMPOSSIBLE TO EXCLUDE

Has the LHC done all it could to discover/exclude natural SUSY?

GENERALITY

Any (motivated / not yet motivated) extension of the MSSM, any spectrum (in particular, any LSP), any RPV, etc.

RESTRICTIONS

- LSP below 400 GeV (otherwise higgsinos are unnaturally heavy)
- **Gluino kinematically accessible** (otherwise unexcluded examples known) For 20 fb⁻¹ @ 8 TeV LHC:

Has the LHC done all it could to discover/exclude natural SUSY?

• All decays are prompt (otherwise experimental subtleties may play a role)

Line of reasoning

- Gluino events (almost) always contain
 at least one of 3 signatures:
 - (1) **Missing energy (MET)** (e.g., stable LSP)
 - (2) Top quarks (e.g., decays via stops)
 - (3) High object multiplicity (6 or more)

• There exist **model-independent searches** sensitive to **each** of these signatures.

• These searches exclude gluinos up to ~ 1 TeV even in **very conservative scenarios**.

Setting the stage

Example: "minimal" natural SUSY scenario

Setting the stage

Example: "minimal" natural SUSY scenario

Setting the stage

Example: "minimal" natural SUSY scenario

Most important searches

MET determined by masses of "hidden valley" particles S, \tilde{S}

MET \rightarrow **2 jets** (per gluino)

Varying MET, (almost) no tops

Tops, no MET from LSP

 \tilde{g}

 \tilde{t}_R

Tops, no MET from LSP

Low MET + many jets searches

- Neutrinos from tops provide enough MET
- Neutrino always appears with a lepton, but lepton veto is evaded by $\tau_{\rm h}$ / lost $e,\,\mu$

Proposed lepton + many jets search

Strongest (or comparable) limits expected

All-hadronic final states (no MET, no tops)

$$\begin{split} \tilde{H}^0_1 &\to S\tilde{S} \\ \tilde{S} &\to S\psi \\ S &\to \phi\phi \\ \phi &\to gg \end{split}$$

All-hadronic final states (no MET, no tops)

Non-generic all-hadronic scenarios

Searches not sufficiently diverse.

- $S_{\rm T}$ range of CMS BH search is **too high** for gluinos
- Both searches: unsophisticated object selection:
 - # objects above a **uniform** p_T threshold
- No search considers jet **substructure**

Indeed, some cases (usually containing **hierarchies**) have weaker limits:

A more comprehensive set of all-hadronic searches is motivated!

Non-generic all-hadronic scenarios

Searches not sufficiently diverse.

- $S_{\rm T}$ range of CMS BH search is **too high** for gluinos
- Both searches: unsophisticated object selection:
 - # objects above a **uniform** p_T threshold
- No search considers jet **substructure**

Indeed, some cases (usually containing **hierarchies**) have weaker limits:

A more comprehensive set of all-hadronic searches is motivated!

Summary

- Gluino events (almost) always contain
 at least one of 3 signatures:
 - (1) Missing energy (MET) (e.g., stable LSP)
 - (2) **Top quarks** (e.g., decays via stops)
 - (3) High object multiplicity (6 or more)
- There exist **model-independent searches** sensitive to **each** of these signatures.
- These searches exclude gluinos up to ~ 1 TeV even in **very conservative scenarios**.

Motivated additional searches

For scenarios with **tops** and **no MET** from LSP:

• Lepton + *b* + many jets

For **all-hadronic** scenarios:

- "CMS BH"-like search for lower $S_{\rm T}$
- Staggered *p*_T cuts (will likely require use of additional kinematic properties for background reduction)
- Jet substructure

Additional Material

Simulation and limit setting

- Process generation and showering in Pythia
- Detector simulation (incl. FastJet), with:
 - Lepton ID eff. (per search)
 - Lepton isolation (per search)
 - Jet energy resolution
 - *b*-tagging (per search)
 - and more...
- Event selection as used in each search
- Validation on examples from ATLAS/CMS papers: typically agree within ~30% (sometimes a factor of ~2)
- Signal efficiency threshold ~ 10⁻⁴ (instead of including systematic uncertainty for signal tails)
- Limits based on ATLAS/CMS's background estimates for each search region. Search region giving the best limit is used.

MET-based searches

ATLAS

CONF-2013-047

CMS-PAS-SUS-13-012

Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum and 20.3 fb⁻¹ of $\sqrt{s} = 8$ TeV proton-proton collision data

	Channel												
Requirement	A (2-	jets)	В	(3-jets)	C (4-	-jets)	D (5-jets) E (6-jets))				
	L	М	М	Т	M T		-	L	М	Т			
$E_{\rm T}^{\rm miss}[{ m GeV}]>$	160												
$p_{\rm T}(j_1) [{\rm GeV}] >$	130												
$p_{\rm T}(j_2) [{\rm GeV}] >$	60												
$p_{\rm T}(j_3) [{\rm GeV}] >$	- 60			60	6	0	60 60		60				
$p_{\rm T}(j_4) [{\rm GeV}] >$	-					0	60	60					
$p_{\mathrm{T}}(j_5) [\mathrm{GeV}] >$	-	-		_	-	-	60	60					
$p_{\rm T}(j_6) [{\rm GeV}] >$	-	-		-	-	-	_	60					
$\Delta \phi(\text{jet}_i, \mathbf{E}_{\text{T}}^{\text{miss}})_{\text{min}} >$	$0.4 \ (i = \{1, 2, (3 \text{ if } p_{\mathrm{T}}(j_3) > 40 \text{ GeV})\})$				0.4 ($i = \{1, 2, 3\}$), 0.2 ($p_{\rm T} > 40$ GeV jets)								
$E_{\rm T}^{\rm miss}/m_{\rm eff}(Nj) >$	0.2	_a	0.3	0.4	0.25	0.25	0.2	0.15	0.2	0.25			
$m_{\rm eff}({\rm incl.})$ [GeV] >	1000	1600	1800	2200	1200	2200	1600	1000	1200	1500			

(a) For SR A-medium the cut on $E_{\rm T}^{\rm miss}/m_{\rm eff}(Nj)$ is replaced by a requirement $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} > 15 {\rm ~GeV^{1/2}}$.

Search for new phenomena in final states with large jet multiplicities and missing transverse momentum at $\sqrt{s} = 8$ TeV proton-proton collisions using the ATLAS experiment

ATLAS arXiv:1308.1841

	Multi-jet + flavour stream											Multi-jet + M_J^{Σ} stream				
Identifier	8j50				9j	50	\geq 10j50		7j	80		≥ 8	3j80	$\geq 8 j 5 0$	\ge 9j50	\geq 10j50
Jet $ \eta $			< 2.0			< 2.0			< 2.8							
Jet $p_{\rm T}$				$> 50 \mathrm{GeV}$				$> 80 \mathrm{GeV}$				$> 50 \mathrm{GeV}$				
Jet count	= 8			= 9		≥ 10		= 7		≥ 8		8	≥ 8	≥ 9	≥ 10	
b-jets ($p_{\rm T} > 40 {\rm GeV}, \eta < 2.5$)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			≥ 2		0	1	≥ 2	0	1	≥ 2					
M_J^{Σ} [GeV]									> 340 and > 420 for each case							
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}}$		$> 4 \text{ GeV}^{1/2}$						$> 4 {\rm GeV}^{1/2}$			$> 4 { m ~GeV^{1/2}}$					

\frown	Njets	H_{T}	H_{T}	s Σ
′ <u> </u>	3-5	500-800	200-300	on
<u>م</u>	3-5	500-800	300-450	len ch
	3-5	500-800	450-600	for
e l	3-5	500-800	> 600	^B Z
	3-5	800-1000	200-300	-in
	3-5	800-1000	300-450	al (
벌	3-5	800-1000	450-600) Sta
	3-5	800-1000	> 600	\sqrt{s}
+	3-5	1000-1250	200-300	n ii
S	3-5	1000-1250	300-450	ro th
e	3-5	1000-1250	450-600	e N TeV
e	3-5	1000-1250	> 600	ר י P-P
ra	3-5	1250-1500	200-300	rot [tije
	3-5	1250-1500	300-450	ets:
je	3-5	1250-1500	> 450	C an
ř.	3-5	>1500	200-300	d N
S	3-5	> 1500	> 300	/lis sio
	6-7	500-800	200-300	sing ns a
Ŭ	6-7	500-800	300-450	<u>5</u> 09
	6-7	500-800	> 450	
	6-7	800-1000	200-300	
\frown	6-7	800-1000	300-450	
$\langle \rangle$	6-7	800-1000	> 450	
6	6-7	1000-1250	200-300	
Ř.	6-7	1000-1250	300-450	
	6-7	1000-1250	> 450	
	6-7	1250-1500	200-300	
명	6-7	1250-1500	300-450	
	6-7	1250-1500	> 450	
+	6-7	>1500	200-300	
B	6-7	>1500	> 300	
la	≥ 8	500-800	> 200	
E	≥ 8	800-1000	> 200	
	≥ 8	1000-1250	> 200	
je	≥ 8	1250-1500	> 200	
Ť.	≥ 8	1500-	> 200	

Top-based searches Proposed $\ell + b + many$ jets

Study of LHC Searches for a Lepton and Many Jets

Lisanti, Schuster, Strassler, Toro JHEP 1211 (2012) 081 [arXiv:1107.5055]

Basic idea: can use high jet multiplicity instead of MET

Event selection: lepton + *b* + many jets (+ very low MET)

Dominant background: $t\bar{t}$ + jets

Look for signal on the tail of S_T distribution

Some b', t' searches are similar, but not sufficiently general:

- Jet multiplicity not sufficiently high
- *b*-tag multiplicity too high
- Too model-specific (e.g., use BDT)

$\ell + b + many jets$ CMS-PAS-B2G-12-004, arXiv:1210.7471 (5/fb at 7 TeV)

a.k.a.

Search for heavy quarks decaying into a top quark and a W or Z boson using lepton + jets events in pp collisions at $\sqrt{s} = 7$ TeV

Selection

- Exactly 1 lepton ($p_T^e > 35$ GeV, $p_T^{\mu} > 42$ GeV)
- Jets with $p_T > 100, 60, 50, 35 \text{ GeV}$
- MET > 20 GeV
- 1+ *b*-tags
- $N_{\text{jets}} = 4, 5, 6, 7+ \text{ (with } p_T > 35 \text{ GeV})$
- S_T distributions (incl. lepton, jets, MET)

Proposed $\ell + b + \text{many jets}$ Expected limits for 20/fb at 8 TeV

Selection

Same as in 7 TeV CMS search:

• Leptons, jets, MET, *b*-tagging

Different from CMS search:

- $N_{\text{jets}} = 4+, 5+, 6+, 7+, 8+, 9+$
- $S_T > S_T^{\max}$, with $S_T^{\max} = 400, 600, 800, ..., 3000$

Background estimation

 $t\overline{t}$ + jets: ALPGEN + Pythia (matched up to 5 extra jets)

 S_T distributions for 7 TeV agree with CMS if we normalize by 1.6. Same factor applied to 8 TeV distributions.

Systematic uncertainties

Hard for us to estimate. Assume 50% (probably conservative).

S_T cut	Back	ground e	events	Limit	on $\sigma \times$	ϵ (fb)
(GeV)	$n \ge 7$	$n \ge 8$	$n \ge 9$	$n \ge 7$	$n \ge 8$	$n \ge 9$
800	1740	480	119	73	20	5.1
1000	830	280	86	35	11.8	3.7
1200	370	141	52	15.5	6.0	2.3
1400	164	64	27	7.0	2.8	1.24
1600	74	30	13.2	3.2	1.41	0.71
1800	32	15.5	7.7	1.49	0.79	0.46
2000	14.4	6.8	2.8	0.75	0.42	0.25
2200	8.1	3.7	1.54	0.50	0.29	0.2
2400	4.7	1.94	0.70	0.33	0.2	0.15
2600	2.1	1.06	0.32	0.25	0.2	0.15
2800	1.20	0.42	0.13	0.2	0.15	0.15
3000	0.32	0	0	0.15	0.15	0.15

6-7 high-*p*_T jets (no MET) ATLAS-CONF-2013-091 (20.3/fb at 8 TeV)

a.k.a.

Search for massive particles decaying into multiple quarks with the ATLAS detector in $\sqrt{s} = 8$ TeV *pp* collisions

Search regions

$N_{\rm jets} \ge$	$N_{\rm jets} \ge 6$			7						
$p_T > (\text{GeV})$	180	80	100	120	140	180				

+ similar regions with b tagging

High object multiplicity ("black hole") CMS, arXiv:1303.5338 (12.1/fb at 8 TeV)

a.k.a.

Search for microscopic black holes in pp collisions at $\sqrt{s} = 8 \,\text{TeV}$

Selection

- At least N objects (jets, leptons, photons) with p_T > 50 GeV where N = 3, 4, ..., 10
- S_T distributions

Background estimation (for each N)

- Shape from N = 2 data
- Normalization from control region 1.9 TeV < S_T < 2.3 TeV

Signal contaminates control regions! Reinterpret the data conservatively: Set expected background to 0. Works because signal is larger than QCD.

~1 TeV gluinos have $S_T \sim 2$ TeV

Sea	arch region	Events	Limit on
$N \ge$	$S_T ({\rm GeV}) >$	in data	$\sigma \times \epsilon \text{ (fb)}$
8	1900	425	38
	2200	122	11.7
9 -	1900	111	10.7
	2200	35	3.8
10	1900	25	2.9
	2200	10	1.4

Compressed spectra

Compressed spectra

