Beyond the Standard Paradigm

- Background
- The standard paradigm
- Uniqueness or environment
- The string landscape
- Extended MSSM quivers

Background

- Career coincided with standard model
 - MIT (1964-1968) (ugrad) Experiment? Theory? Mathematics?
 - U. California, Berkeley (1968-1972) (PhD)
 - Rockefeller University (1972-1974) (postdoc)
 - U. Pennsylvania (1974-2006) (postdoc, faculty, Chair)
 Formal theory or "phenomenology"?
 - Institute for Advanced Study and Princeton (2006-) ("postdoc")
- Late 60's: unlikely to understand strong or weak in our lifetimes
- 2014: nature understood to 10^{-16} cm (but dark matter/energy; naturalness)
- Hope for 2060: nature understood to Planck scale, 10⁻³³ cm (need top-down and bottom-up and cooperative Nature)

Mainz (16/7/14)

• My research

- Contact between theory and experiment
- Chiral perturbation theory
- Precision electroweak (global analyses)
- Neutrino mass (early global analyses; MSW sign; sterile abundance)
- BSM (GUTs, beyond MSSM, Z', string phenomenology)
- Lecture series
- Textbook: The Standard Model and Beyond, (CRC Press, 2010)

The Standard Model

- Spectacularly successful/unsuccessful
- Mathematically consistent
- Describes nature to 10^{-16} cm
- Recent Higgs discovery
- However, complicated, fine-tuned
- Missing: dark matter and energy
- Most effort is BSM
- Most popular: supersymmetry (minimal version [MSSM])

The Standard Paradigm

- MSSM at TeV scale (but no LHC signal)
- LSP WIMPs (but no clear signal); dark energy (cosmological constant?)
- (Possibly) **GUT** at unification scale (gauge unification)
- Seesaw model for $m_{
 u}$
 - Leptogenesis
 - (Possibly) **GUT** relations for couplings (large representations?)
 - Flavor symmetries (discrete, global, gauge)
- SUSY breaking in hidden sector
- Assumptions of naturalness, uniqueness, minimality

Beyond the MSSM

Even if TeV-supersymmetry found, MSSM may not be the full story

Most of the problems of standard model remain, new ones introduced (FCNC, EDM, proton decay if no R_P)

 μ problem introduced: $W_{\mu} = \mu \hat{H}_{u} \cdot \hat{H}_{d}, \quad \mu = \mathcal{O}(\text{electroweak})$

Remnants of GUT/Planck scale physics may survive to TeV scale

Specific string constructions often have extended gauge groups, exotics, extended Higgs/neutralino sectors (defect or hint?)

Ingredients of 4d GUTs hard to embed in string, especially large Higgs representations, Yukawa relations

Important to explore alternatives/extensions to MSSM

Mainz (16/7/14)

Naturalness or Tuning

- ATLAS/CMS: no sign of supersymmetry or other new physics
- Higgs-like particle: consistent with elementary Higgs
 - SM: rather light (metastable vacuum or new physics below 10^{11} GeV)
 - MSSM: rather heavy (need heavy stop or large mixing)

- Higgs mass² very unnatural (tuning by 10³⁴) unless TeV physics (supersymmetry, alternative EWSB, large dimensions)
- Is naturalness a good guide? cf dark energy (tuning by 10¹²⁰) (environmental solution?)
- Even for higher-scale new physics: little (baby) hierarchy problem (but reduces FCNC, EDM constraints)

Uniqueness or Environment

- Gauge interactions: determined by symmetry (but groups, representations, SSB)
- Yukawa interactions (flavor physics): apparently unconstrained, unless new symmetries/principles (local, global, discrete, stringy)
- The uniqueness paradigm (cf., Kepler's Mysterium Cosmographicum)
 - Assumption that there is a simple, unique, underlying theory
 - Enormous effort (especially ν) to understand spectrum/mixings by flavor symmetries/textures, usually in seesaw context (tri-bimaximal, bimaximal, complementarity, GUT + flavor, lopsided, Froggatt-Nielsen, haze, loops, \mathcal{R}_p)
 - $\theta_{13} \neq 0, \theta_{23} \neq 45^{\circ}$ excludes many models or requires perturbations

Mainz (16/7/14)

Kepler's Mysterium Cosmographicum

Mainz (16/7/14)

- The environmental paradigm (cf., planetary orbits)
 - No simple explanation of parameters
 (but scales/hierarchies by FN-like powers or exponentials?)
 - String landscape: may be $\gtrsim 10^{600}$ vacua with no known selection principle
 - Subset habitable, with different groups, remnants, hierarchy mechanisms, parameters
 - Multiverse sampled by eternal inflation?
 - Environmental selection? (A word?)

Early Speculations

Horatio:

O day and night, but this is wondrous strange!

Hamlet:

And therefore as a stranger give it welcome. There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy.

(William Shakespeare: Hamlet, 1603)

- The environmental paradigm (contd.)
 - Underlying constraints often too complicated to unravel
 - Version of anarchy
- Distinction of paradigms critical

The String Landscape

- String theory very promising (finite quantum gravity & other interactions)
- However, may be enormous landscape of vacua (> 10⁶⁰⁰) (no known selection principle)
- Many contain SM or MSSM
- Many involve TeV-scale remnants (e.g., Z', exotics, extended Higgs, quasi-hidden sectors) beyond the MSSM (hint?)
- Top-down remnants may not be minimal or motivated by SM problems

Minimality or Remnants

- Some bottom-up ideas unlikely to emerge from simple/perturbative string constructions
 (e.g., high-dimensional representations; tri-fundamental representations; very large groups; F theory?)
- Top-down may suggest new physical mechanisms (e.g., D (string) instantons: exponentially suppressed μ , Majorana or Dirac m_{ν} , etc)
- Important to map (perturbative) string-likely or unlikely classes of new physics and mechanisms (and contrast with field theory)

Typical Stringy Effects

- Z' (or other gauge)
- Extended Higgs/neutralino (doublet, singlet)
- Quasi-chiral exotics
- Leptoquark, diquark, R_P couplings
- Family non-universality (from different origins) (Yukawas, U(1)')
- Various ν mass mechanisms (HDO: Majorana or Dirac; D (string) instantons: non-minimal seesaw, Weinberg op, Dirac, sterile)
- (Quasi-)hidden sectors (strong coupling? SUSY breaking? dark matter? random?); may be portals (exotics, Z', Higgs)

Mainz (16/7/14)

- Perturbative global symmetries from anomalous U(1)' (exponentially-suppressed breaking)
- Nonstandard hypercharge embeddings/normalizations
- Fractionally charged color singlets (e.g., $\frac{1}{2}$) (confined?, stable relic? millicharged?)
- Large/warped dimensions, low string scale (TeV black holes, stringy resonances)
- Axions, moduli, cosmic strings
- Time/space/environment-varying couplings
- LIV, VEP (speeds, decays, [oscillations] of HE γ , e, gravity waves, [ν 's])

Surveying the Landscape

- MSSM-like
 - Remnants common (but often explicity excluded)
 - Extensions of MSSM quivers may be needed (stringy constraints)

• Counting of group factors, families, etc; MSSM and beyond

- Denef, Douglas [0404116, 0411183]
- Kumar, Wells [0409218]
- DeWolfe, Giryavets, Kachru, Taylor [0411061]
- Blumenhagen, Gmeiner, Honecker, Lust, Weigand [0411173, 0510170]
- Dienes, Dudas, Gherghetta [0412185]
- Arkani-Hamed, Dimopoulos, Kachru [0501082]
- Kumar [0601053]
- Dienes [0602286]; Dienes, Lennek, Senechal, Wasnik [0704.1320]
- Anastasopoulos, Dijkstra, Kiritsis, Schellekens [0605226]
- Shelton, Taylor, Wecht [0607015]
- Gmeiner [0608227]; Gmeiner, Honecker [0708.2285]
- Douglas, Kachru [0610102]
- Blumenhagen, Kors, Lust, Stieberger [0610327]
- Denef, Douglas, Kachru [0701050]
- AbdusSalam, Conlon, Quevedo, Suruliz [0709.0221]
- Balasubramanian, de Boer, Naqvi [0805.4196]
- Gabella, He, Lukas [0808.2142]
- Anderson, Gray, Lukas, Palti [1106.4804]
- Schellekens [1306.5083]; Gato-Rivera, Schellekens [1401.1782]
- Nibbelink, Loukas [1308.5145]
- Faraggi, Rizos, Sonmez [1403.4107]

Intersecting Brane (Type IIA) Constructions

- U(N) from N D6 branes (fill 3 of the 6 extra dimensions)
- Adjoints, bifundamentals (open); gravitons (closed)
- Also, symmetric, antisymmetric; SO(2N), Sp(2N)
- Families from multiple intersections (3-cycles wrapping 6d)
- Yukawa interactions $\sim \exp(-A_{ijk}) \rightarrow$ hierarchies
- Existing models: additional gauge factors, Higgs, chiral matter
- Global U(1)'s (may be broken by nonperturbative D instantons)

Mainz (16/7/14)

Tadpoles and Extended MSSM Quivers

Implications of String Constraints for Exotic Matter and Z's Beyond the Standard Model, M. Cvetič, J. Halverson, PL, JHEP 1111,058 (1108.5187); Anomaly Nucleation Constrains SU(2) Gauge Theories, J. Halverson, PRL 111, 261601 (1310.1091)

- Intersecting brane type IIA constructions (and others): tadpole cancellation conditions stronger than anomaly cancellation in augmented field theory (for $N_a = 1, 2$) (FT with anomalous U(1)'s and Chern-Simons terms)
 - $U(N_a)$ from stack of N_a D6 branes:

$$\begin{split} N_a &\geq 2: \qquad \#a - \#\overline{a} + (N_a + 4) \ (\# \Box_a - \# \overline{\Box}_a) + (N_a - 4) \ (\# \Box_a - \# \overline{\Box}_a) = 0 \\ N_a &= 1: \qquad \#a - \#\overline{a} + (N_a + 4) \ (\# \Box_a - \# \overline{\Box}_a) = 0 \ \ \text{mod} \ \ 3, \end{split}$$

- $SU(N_a)^3$ triangle anomaly condition for $N_a \ge 3$
- Landscape view: all vacua must be consistent

Mainz (16/7/14)

- "Anomalous" U(1) from trace generator of U(N) usually acquires Stuckelberg mass near string scale M_s
 - Anomalies cancelled by Chern-Simons
 - $U(1) \Rightarrow$ global symmetry on (perturbative) superpotential
 - May be broken by non-perturbative D-instantons (exponentially suppressed)
- Linear combination $\sum q_x U(1)_x$ may be massless, non-anomalous if

$$egin{aligned} &-q_a N_a \; (\# \Box_a - \# \overline{\Box}_a + \# \Box_a - \# \overline{\Box}_a) + \sum_{x
eq a} q_x N_x \; (\# (a, \overline{x}) - \# (a, x)) = 0, & N_a \geq 2 \ &q_a \; rac{\# (a) - \# (\overline{a}) + 8 (\# \Box_a) - \# \overline{\Box}_a)}{3} + \sum_{x
eq a} q_x N_x \; (\# (a, \overline{x}) - \# (a, x)) = 0, & N_a = 1 \end{aligned}$$

- Require one linear combination \Rightarrow weak hypercharge, Y
- May be additional massless combinations, broken by Higgs singlet VEVs \Rightarrow TeV-scale Z' (even for $M_s = \mathcal{O}(M_{pl})$)

Mainz (16/7/14)

New Matter and Z's

- Most quivers with just MSSM chiral matter don't satisfy tadpole (plus $H \not\sim L$) constraints (none for 3 nodes with no vector pairs)
- Systematically add matter to MSSM quivers to satisfy tadpole and hypercharge conditions (eight 3 and 4-node hypercharge embeddings)
 - Up to 5 additional fields
 - Don't allow purely vector pairs (typically acquire M_s -scale masses)
 - Allow quasi-chiral pairs (vector under MSSM; chiral under "anomalous" or additional non-anomalous U(1)'s)
 - May also exclude fractional charge, heavy chiral states, no $H_d L$ distinction

SM Rep	Total Multiplicity	Int. El.	4 th Gen. Removed	Shifted 4 th Gen. Also Removed
$(1,1)_0$	174276	173578	173578	173578
$(1,3)_0$	48291	48083	48083	48083
$(1,2)_{-\frac{1}{2}}$	39600	39560	38814	38814
$(1,2)_{\frac{1}{2}}$	38854	38814	38814	38814
$(\overline{\bf 3}, 1)_{rac{1}{3}}$	25029	25007	24261	24241
$(3,1)_{-\frac{1}{3}}$	24299	24277	24277	24241
$(1,1)_1$	15232	15228	14482	14482
$(1,1)_{-1}$	14486	14482	14482	14482
$(\overline{3},1)_{-\frac{2}{3}}$	3501	3501	2755	2755
$(3,1)_{rac{2}{3}}$	2755	2755	2755	2755
$(3,2)_{\frac{1}{6}}$	1784	1784	1038	1038
$(\overline{3},2)_{-\frac{1}{6}}$	1038	1038	1038	1038
$(1,2)_0$	852	0	0	0
$(1,2)_{\frac{3}{2}}$	220	220	220	184
$(1,2)_{-\frac{3}{2}}$	204	204	204	184
$(1,1)_{rac{1}{2}}$	152	0	0	0
$(1,1)_{-rac{1}{2}}$	152	0	0	0
$(3,1)_{\frac{1}{6}}$	124	0	0	0
$(\overline{3},1)_{-\frac{1}{6}}$	124	0	0	0
$(3,1)_{-\frac{4}{3}}$	36	36	36	0
$(1,3)_{-1}$	36	36	36	0
$(\overline{\bf 3},{\bf 2})_{\frac{5}{6}}$	36	36	36	0
$(\overline{3},1)_{rac{4}{3}}$	20	20	20	0
$(1,3)_1$	20	20	20	0
$(3,2)_{-\frac{5}{6}}$	20	20	20	0

- MSSM singlets with anomalous U(1) charge
 - Perturbative NMSSM-like singlet $(S_{\mu}H_{u}H_{d})$ (alternative: D-instanton)
 - Perturbative ν_L^c -like singlet ($\nu_L^c H_u L$) (alternative: Dirac or Weinberg op by D-instanton)
 - Random
- Isotriplets (Y = 0)

- Quasi-chiral pairs: lepton/Higgs doublets; down-type quark isosinglets; nonabelian singlets (Y = Q = ±1) (+ some up-type quark isosinglets, quark isodoublets, shifted lepton/Higgs doublets (Q = (±1, ±2)))
 - Mass by $SX\bar{X}$ (S =MSSM singlet) or $X\bar{X}$ (D-instantons)
 - Produce quarks/scalar partners by QCD
 - Cascade decays to lightest
 - Decay: mixing, lepto/di-quark, HDO (rapid, delayed, quasi-stable)
 - Many have $H_d L$ distinction (necessary for L and R-parity conservation)
- Small number fractional charges, chiral fourth family (Landau poles), shifted fourth families: (3,2)_{-5/6}, (3,1)_{1/3}, (3,1)_{4/3}, (1,2)_{-3/2}, (1,3)₁

Mainz (16/7/14)

- Quivers with additional (non-anomalous) U(1)' gauge symmetry
 - \lesssim 50% are family universal for q_L , L, u_L^c , d_L^c , and e_L^c
 - Family non-universal (quiver distinct): GIM violation, FCNC (*B_s* anomalies?)

	Multiplicity of Quivers				
Hypercharge	U(1)'	H_d Candidate	Fam. Univ	$S_{\mu}H_{u}H_{d}$	$LH_u u_L^c$
$(-rac{1}{3},-rac{1}{2},0)$	0	0	0	0	0
$(rac{1}{6},0,rac{1}{2})$	1	0	0	0	0
$(-rac{1}{3},-rac{1}{2},0,0)$	198	146	56	70	94
$(-rac{1}{3},-rac{1}{2},0,rac{1}{2})$	0	0	0	0	0
$(-rac{1}{3},-rac{1}{2},0,1)$	78	16	10	0	5
$(rac{1}{6},0,rac{1}{2},0)$	0	0	0	0	0
$(rac{1}{6},0,rac{1}{2},rac{1}{2})$	1803	1466	629	610	600
$(rac{1}{6},0,rac{1}{2},rac{3}{2})$	82	0	0	0	0

Conclusions

- String landscape/eternal inflation: physics may be (partially) environmental
- From bottom up: there may be more at TeV scale than MSSM
- From top down: there may be more at TeV scale than MSSM (e.g., Z', extended Higgs/neutralino, quasi-chiral exotics, nonstandard ν)
- Important to delineate difference between string possibilities and field theory possibilities

A TeV-Scale Z'

Review: Rev.Mod.Phys.81,1199 (arXiv:0801.1345)

- Strings, GUTs, DSB, little Higgs, LED often involve extra Z' (harder to break U(1)' factors than non-abelian: remnants)
- Typically $M_{Z'}\gtrsim 2-3$ TeV for electroweak coupling (LHC, Tevatron, LEP 2, WNC); $| heta_{Z-Z'}| < {
 m few} imes 10^{-3}$ (Z-pole)
- Discovery to $M_{Z'} \sim 5 6$ TeV at LHC-14, higher in e^-e^+ $(pp \rightarrow \mu^+\mu^-, e^+e^-, q\bar{q})$ (depends on couplings, exotics, sparticles)
- LHC diagnostics to 1-3 TeV (BR's, asymmetries, polarizations, y distributions, associated production, rare decays); higher for ILC/CLIC/TLEP
- Light (150-300 GeV) leptophobic, TeV-scale (FCNC), or very light (\lesssim 10 GeV) Z' portal (DM)

Mainz (16/7/14)

Godfrey, Martin, 1309.1688

Paul Langacker (IAS/Princeton)

Mainz (16/7/14)

String Z'

- Non-anomalous, descending through non-abelian group $(E_6, SO(10), Pati-Salam (may be <math>T_{3R}, T_{BL}, E_6$ or "random"))
- Anomalous U(1)', e.g., from U(N) or U(1) branes
 - Stückelberg masses $\sim M_{str}$
 - Z^\prime and Chern-Simons term may be observable for $M_{str} \sim {\rm TeV}$
 - Large M_{str} : may be anomaly-free combinations (in addition to Y); often family non-universal

Implications of a TeV-scale U(1)'

- Couplings \rightarrow clues about embedding into underlying theory
- Natural solution to μ problem: $W \sim h_s S H_u H_d \rightarrow \mu_{eff} = h_s \langle S \rangle$

("stringy version" of NMSSM)

- Supersymmetry: $SU(2) \times U(1)$ and U(1)' breaking scales both set by SUSY breaking scale (unless flat direction)
- Extended Higgs sector
 - Relaxed mass limits, couplings, parameters (e.g., $\tan \beta \sim 1$)
 - Higgs singlets needed to break U(1)'
 - Doublet-singlet mixing, extended neutralino sector
 (→ non-standard collider signatures)

- Extended neutralino sector
 - Additional neutralinos, non-standard couplings, e.g., light singlino-dominated, extended cascades
 - Additional cold dark matter, $g_{\mu}-2$ possibilities
- Exotics (anomaly-cancellation)
 - Non-chiral wrt SM but chiral wrt U(1)'
 - May decay by mixing; by diquark or leptoquark coupling; or be quasi-stable
- Z' decays into sparticles/exotics (SUSY factory)
- Flavor changing neutral currents (for non-universal U(1)' charges)
 - Tree-level effects in B decay competing with SM loops (or with enhanced loops in MSSM with large $\tan \beta$)
 - $B_s \bar{B}_s$ mixing, B_d penguins
 - $t\bar{t}$ forward-backward asymmetry (probably excluded)

Mainz (16/7/14)

- Non-universal charges: MSW-type effects (apparent CPT violation)
- $Z' \tilde{Z}'$ mediation of SUSY breaking
- Constraints on neutrino mass generation
 - Various versions allow or exclude Type I or II seesaws, extended seesaw, small Dirac by HDO or non-holomorphic soft; stringy Weinberg operator, Majorana seesaw, small Dirac by string instantons; sterile mixing (e.g., Kang, PL, Li; Phys. Rev. D 71, 015012 (2005) [hep-ph/0411404])
- Large A term and possible tree-level CP violation (no new EDM constraints) \rightarrow electroweak baryogenesis

Extended Higgs Sector

- Standard model singlets S_i and additional doublet pairs $H_{u,d}$ very common
- Additional doublet pairs
 - Richer spectrum, decay possibilities (anomalies?)
 - May be needed (or expand possibilities for) quark/lepton masses/mixings (e.g., stringy symmetries may restrict single Higgs couplings to one or two families)
 - Extra neutral Higgs \rightarrow FCNC (suppressed by Yukawas)
 - Significantly modify gauge unification (unless compensated)

Higgs singlets S_i

- Standard model singlets common in string constructions
- Needed to break extra U(1)' gauge symmetries
- Solution to μ problem (U(1)', NMSSM, nMSSM, sMSSM)

$$W \sim h_s S H_u H_d
ightarrow \ \mu_{eff} = h_s \langle S
angle$$

- F(D) terms allow larger MSSM-like Higgs mass
- Modified couplings, parameter ranges, branching ratios
- Singlet-doublet mixing
- Large A term and possible tree-level CP violation \rightarrow electroweak baryogenesis

Mainz (16/7/14)

Quasi-Chiral Exotics

- Often find exotic (wrt $SU(2) \times U(1)$) quarks/leptons at TeV scale
 - Assume non-chiral wrt SM gauge group (strong constraints on SM chiral from large Yukawas (⇒ Landau poles), precision EW)
 - Can be chiral wrt extra U(1)'s or other extended gauge
 - Usually needed for $U(1)^\prime$ anomaly cancellation
 - Modify gauge unification unless in complete GUT multiplets
 - Strings typically yield (anti-) (bi-) fundamentals, adjoints, (anti-) symmetrics
 - May also be quasi-hidden, shifted charges, or fractional charges

• Examples in 27-plet of E_6

$$-D_{L} + D_{R} (SU(2) \text{ singlets, chiral wrt } U(1)')$$

$$-\left(\begin{array}{c}E^{0}\\E^{-}\end{array}\right)_{L} + \left(\begin{array}{c}E^{0}\\E^{-}\end{array}\right)_{R} (SU(2) \text{ doublets, chiral wrt } U(1)')$$

- Pair produce D + D by QCD processes (smaller rate for exotic leptons)
- D or \tilde{D} decay by
 - $D
 ightarrow u_i W^-, \ D
 ightarrow d_i Z, \ D
 ightarrow d_i H^0$ if driven by D d mixing (not in minimal E_6 ; FCNC)
 - $D \rightarrow$ quark jets if driven by diquark operator $\bar{u}\bar{u}\bar{D}$, or quark jet + lepton for leptoquark operator $lq\bar{D}$ (still have stable LSP)
 - May be stable at renormalizable level due to accidental symmetry (e.g., extended gauge group) → hadronizes and escapes or stops in detector (quasi-stable from HDO → τ < 1/10 yr) (Kang, PL, Nelson, Phys.Rev. D77, 035003 (arXiv:0708.2701))

Mainz (16/7/14)

• Applications: $H \rightarrow \gamma \gamma$, dark matter, baryogenesis, *B*-mixing/decays, FCNC, flavor structure, A^b_{FB} , gauge mediation

- PL, London [PR D38,886]
- Choudhury, Tait, Wagner [0109097]
- del Aguila, de Blas, Perez-Victoria [0803.4008]
- Endo, Hamaguchi, Ishikawa, Iwamoto,
 Yokozaki
 [1108.3071,1112.5653,1212.3935]
- Martin, James D. Wells [1206.2956]
- Bonne, Moreau [1206.3360]
- Joglekar, Schwaller, Wagner [1207.4235,1303.2969]
- Botella, Branco, Nebot [1207.4440]
- Arkani-Hamed, Blum, D'Agnolo, Fan [1207.4482]
- Kearney, Pierce, Weiner [1207.7062]
- Batell, Gori, Wang [1209.6382]
- Cacciapaglia, Deandrea, Perries, Sordini, Panizzi [1211.4034]

- Garberson, T. Golling [1301.4454]
- Buras, Girrbach, Ziegler [1301.5498]
- Aguilar-Saavedra, Benbrik, Heinemeyer, Perez-Victoria [1306.0572]
- Alves, Barreto, Camargo, Dias [1306.1275]
- Aguilar-Saavedra [1306.4432]
- Ishiwata, Wise [1307.1112]
- Alloul, Frank, Fuks, de Traubenberg [1307.1711]
- Fairbairn, Philipp Grothaus [1307.8011]
- Altmannshofer, Bauer, Carena [1308.1987]
- Halverson [1310.1091]

Small neutrino masses

- Many mechanisms for small $m_{
 u}$, both Majorana and Dirac
- Minimal Type I seesaw
 - Bottom-up motivation: no gauge symmetries prevent large Majorana mass for ν_R
 - Connection with leptogenesis
 - Argument that L must be violated is misleading [non-gravity: large 126 of SO(10) or HDO added by hand] [gravity: $m_{\nu} \lesssim \nu_{EW}^2 / \overline{M}_P \sim 10^{-5}$ eV (unless LED); often much smaller]
 - New TeV or string scale physics/symmetries/constraints may invalidate assumptions
 [No 126 in string-derived SO(10)]
- Bottom-up alternatives: Higgs (or fermion) triplets, extended (TeV) seesaws, loops, R_p violation

Mainz (16/7/14)

• String-motivated alternatives

(review: ARNPS, 62, 215; arXiv:1112.5992)

- Higher-dimensional operators (HDO)

[non-minimal seesaw (not GUT-like), direct Majorana (Weinberg op), small Dirac (e.g., U(1)' or non-holomorphic soft), mixed (LSND, MiniBooNE)]

- String instantons (exponential suppressions) [non-minimal seesaw, direct Majorana, small Dirac]
- Geometric suppressions (large dimensions) [small Dirac]
- Alternatives often associated with new TeV physics, electroweak baryogenesis, etc.

MSSM hypercharge embeddings

(Ibanez, Marchesano, Rabadan; Anastasopoulos, Dijkstra, Kiritsis, Schellekens)

• Three-node embeddings $(U(3)_a \times U(2)_b \times U(1)_c)$

Madrid:
$$U(1)_Y = \frac{1}{6}U(1)_a + \frac{1}{2}U(1)_c$$

non-Madrid: $U(1)_Y = -\frac{1}{3}U(1)_a - \frac{1}{2}U(1)_b$

• Four-node embeddings $(U(3)_a \times U(2)_b \times U(1)_c \times U(1)_d)$

$$\begin{split} U(1)_Y &= \frac{1}{6}U(1)_a + \frac{1}{2}U(1)_c + \frac{1}{2}U(1)_d \qquad U(1)_Y = -\frac{1}{3}U(1)_a - \frac{1}{2}U(1)_b + \frac{1}{2}U(1)_d \\ U(1)_Y &= \frac{1}{6}U(1)_a + \frac{1}{2}U(1)_c + \frac{3}{2}U(1)_d \qquad U(1)_Y = -\frac{1}{3}U(1)_a - \frac{1}{2}U(1)_b \\ U(1)_Y &= \frac{1}{6}U(1)_a + \frac{1}{2}U(1)_c \qquad U(1)_Y = -\frac{1}{3}U(1)_a - \frac{1}{2}U(1)_b + U(1)_d, \end{split}$$

Mainz (16/7/14)

• 105 Madrid 3-node quivers (≤ 5 additions)

Multiplicity	Matter Additions					
4	\square_b , $(1,3)_0$	\square_b , $(1,3)_0$	$_{\exists b}$, $(1,1)_0$	(a,\overline{b}) , $(3,2)_{rac{1}{6}}$	$(\overline{a},\overline{b})$, $(\overline{3},2)_{-\frac{1}{6}}$	
4	\square_b , $(1,3)_0$	$_{\exists b}$, $(1,1)_0$				
4	\equiv_b , $(1,3)_0$	$_{\exists b}$, $(1,1)_0$				
4	\square_b , $(1,3)_0$	$_{egin{smallmatrix} eta_b,\ (1,1)_0 \end{smallmatrix}$	$_{egin{smallmatrix} eta_b,\ (1,1)_0 \end{pmatrix}$	(b,\overline{c}) , $(1,2)_{-rac{1}{2}}$	(b,c) , $(1,2)_{rac{1}{2}}$	
4	\equiv_b , $(1,3)_0$	$_{oxdot b}$, $(1,1)_0$	$_{egin{smallmatrix} eta_b}$, $(1,1)_0$	(b,\overline{c}) , $(1,2)_{-rac{1}{2}}$	(b,c) , $(1,2)_{rac{1}{2}}$	
4	\square_b , $(1,3)_0$	$ar{\scriptscriptstyle ar{\scriptscriptstyle B}}_b$, $(1,1)_0$	$ar{\scriptscriptstyle ar{\scriptscriptstyle heta}}_b$, $(1,1)_0$	(a,\overline{b}) , $(3,2)_{rac{1}{6}}$	$(\overline{a},\overline{b})$, $(\overline{3},2)_{-\frac{1}{6}}$	
4	$ar{{}_{b}}$, $(1,1)_{0}$	$ar{{}_{b}}$, $(1,1)_{0}$			<u> </u>	
4	$ar{\scriptscriptstyle ar{\scriptscriptstyle B}}_b$, $(1,1)_0$	(b,\overline{c}) , $(1,2)_{-rac{1}{2}}$	(b,c) , $(1,2)_{rac{1}{2}}$			
4	(b,\overline{c}) , $(1,2)_{-rac{1}{2}}$	$(b, \overline{c}), (1, 2)_{-\frac{1}{2}}$	$(b,c), (1,2)_{\frac{1}{2}}$	(b,c) , $(1,2)_{rac{1}{2}}$		
4	(a,\overline{b}) , $(3,2)_{rac{1}{6}}$	\exists_a , $(\overline{3}, 1)_{rac{1}{3}}$	(b,\overline{c}) , $(1,2)_{-rac{1}{2}}$	$(\overline{a},\overline{c})$, $(\overline{3},1)_{-rac{2}{3}}$	\square_c , $(1,1)_1$	
4	$\square_b, (1,3)_0$	$\exists_b, (1,1)_0$	$_{egin{array}{c} eta_b,\ (1,1)_0\end{array}}$	$_{\exists b}$, $(1,1)_0$	$_{egin{array}{c} eta_b,\ (1,1)_0\end{array}$	
4	\equiv_b , $(1,3)_0$	$_{\exists b}$, $(1,1)_0$	$_{\exists b}$, $(1,1)_0$	$_{\exists b}$, $(1,1)_0$	$_{egin{smallmatrix} eta_b,\ (1,1)_0 \ \end{array}$	
4	\equiv_b , $(1,3)_0$	$ar{\scriptscriptstyle ar{\scriptscriptstyle B}}_b$, $(1,1)_0$	$ar{\scriptscriptstyle ar{\scriptscriptstyle ext{ iny b}}}$, $(1,1)_0$			
4	\square_b , $(1,3)_0$	$ar{\scriptscriptstyle ilde{\scriptscriptstyle b}}$, $(1,1)_0$	(b,\overline{c}) , $(1,2)_{-rac{1}{2}}$	(b,c) , $(1,2)_{rac{1}{2}}$		
4	\equiv_b , $(1,3)_0$	(b,\overline{c}) , $(1,2)_{-rac{1}{2}}$	(b,\overline{c}) , $(1,2)_{-rac{1}{2}}$	(b,c) , $(1,2)_{rac{1}{2}}$	(b,c) , $(1,2)_{rac{1}{2}}$	
4	$_{\exists b}$, $(1,1)_0$					
4	$_{igstar{b}}$, $(1,1)_0$	$_{egin{smallmatrix} eta_b,\ (1,1)_0 \end{smallmatrix}$	(b,\overline{c}) , $(1,2)_{-rac{1}{2}}$	(b,c) , $(1,2)_{rac{1}{2}}$		
4	\equiv_b , $(1,3)_0$	\equiv_b , $(1,3)_0$	$ar{\scriptscriptstyle ar{\scriptscriptstyle B}}_b$, $(1,1)_0$	$\bar{\exists}_b$, $(1,1)_0$		
4	${\scriptstyle \overline{\Box}_b}$, $(1,3)_0$	\equiv_b , $(1,3)_0$	$ar{\scriptscriptstyle ar{\scriptscriptstyle extsf{ heta}}}_{b}$, $(1,1)_{0}$	(b,\overline{c}) , $(1,2)_{-rac{1}{2}}$	(b,c) , $(1,2)_{rac{1}{2}}$	
4	$_{\exists b}$, $(1,1)_0$	$_{\exists b}$, $(1,1)_0$	$_{\exists b}$, $(1,1)_0$	$_{\exists b}$, $(1,1)_0$		

Mainz (16/7/14)

Multiplicity	Matter Additions						
4	\equiv_b , $(1,3)_0$	\Box_b , $(1,3)_0$	\equiv_b , $(1,3)_0$	$ar{ar{\scriptscriptstyle ext{ iny b}}}$, $(1,1)_0$	$ar{ar{\scriptscriptstyle ext{ iny b}}}$, $(1,1)_0$		
4	\equiv_b , $(1,3)_0$	\equiv_b , $(1,3)_0$	$_{\exists b}$, $(1,1)_{0}$				
1	$_{egin{smallmatrix} _{egin{smallmatrix} _{a} , \ \end{array}}}\left(\overline{f 3}, 1 ight)_{rac{1}{3}}$	□ $_{□ b}$, $(1,3)_0$	$_{egin{smallmatrix} eta_b}$, $(1,1)_0$	(a,\overline{c}) , $(3,1)_{-rac{1}{3}}$			
1	$\bar{\scriptscriptstyle{\mathbb{H}}}_a$, $(3,1)_{-rac{1}{3}}$	\square_b , $(1,3)_0$	$_{egin{smallmatrix} eta_b,\ (1,1)_0 \end{smallmatrix}$	(\overline{a},c) , $(\overline{3},1)_{rac{1}{3}}$			
1	$_{egin{smallmatrix} \exists a$, $(\overline{f 3}, 1)_{rac{1}{3}}$	\square_b , $(1,3)_0$	$_{egin{smallmatrix} _{eta_b},\ (1,1)_0 \end{array}$	(a,\overline{c}) , $(3,1)_{-rac{1}{3}}$			
1	$ar{\scriptscriptstyle ar{\scriptscriptstyle heta}}_a$, $(3,1)_{-rac{1}{3}}$	\equiv_b , $(1,3)_0$	$_{egin{smallmatrix} eta_b}$, $(1,1)_0$	(\overline{a},c) , $(\overline{f 3},1)_{rac{1}{3}}$			
1	$_{egin{smallmatrix} \exists a extsf{, 1} \end{bmatrix}_{rac{1}{3}}}$	$ar{\scriptscriptstyle ar{\scriptscriptstyle B}}_{b}$, $(1,1)_{0}$	$ar{\scriptscriptstyle ar{\scriptscriptstyle B}}_b$, $(1,1)_0$	(a,\overline{c}) , $(3,1)_{-rac{1}{3}}$			
1	$ar{\scriptscriptstyle ar{\scriptscriptstyle heta}}_a$, $(3,1)_{-rac{1}{3}}$	$ar{\scriptscriptstyle ar{\scriptscriptstyle B}}_b$, $(1,1)_0$	$ar{\scriptscriptstyle ar{\scriptscriptstyle B}}_b$, $(1,1)_0$	(\overline{a},c) , $(\overline{f 3},1)_{rac{1}{3}}$			
1	$_{egin{smallmatrix} \exists a extsf{, 1} \end{bmatrix}_{rac{1}{3}}}$	$ar{\scriptscriptstyle ar{\scriptscriptstyle B}}_{b}$, $(1,1)_{0}$	(b,\overline{c}) , $(1,2)_{-rac{1}{2}}$	(b,c) , $(1,2)_{rac{1}{2}}$	(a,\overline{c}) , $(3,1)_{-rac{1}{3}}$		
1	$ar{\scriptscriptstyle ar{\scriptscriptstyle heta}}_a$, $(3,1)_{-rac{1}{3}}$	$ar{\scriptscriptstyle ar{\scriptscriptstyle B}}_{b}$, $(1,1)_0$	(b,\overline{c}) , $(1,2)_{-rac{1}{2}}$	(b,c) , $(1,2)_{rac{1}{2}}$	(\overline{a},c) , $(\overline{f 3},1)_{rac{1}{3}}$		
1	(a,\overline{b}) , $(3,2)_{rac{1}{6}}$	(b,\overline{c}) , $(1,2)_{-rac{1}{2}}$	(\overline{a},c) , $(\overline{f 3},1)_{rac{1}{3}}$	$(\overline{a},\overline{c})$, $(\overline{3},1)_{-rac{2}{3}}$	\square_c , $(1,1)_1$		
1	$_{egin{smallmatrix} _{egin{smallmatrix} _{a} , \ \end{array}}}\left(\overline{f 3}, 1 ight)_{rac{1}{3}}$	${\scriptstyle egin{array}{c} {\scriptstyle eta}_b {\scriptstyle , \ } (1,3)_0 \end{array}}$	$ar{\scriptscriptstyle ar{\scriptscriptstyle B}}_b$, $(1,1)_0$	$ar{\scriptscriptstyle ilde{\scriptscriptstyle b}}$, $(1,1)_0$	(a,\overline{c}) , $(3,1)_{-rac{1}{3}}$		
1	$ar{\scriptscriptstyle ar{\scriptscriptstyle heta}}_a$, $(3,1)_{-rac{1}{3}}$	\equiv_b , $(1,3)_0$	$ar{\scriptscriptstyle ar{\scriptscriptstyle B}}_b$, $(1,1)_0$	$ar{\scriptscriptstyle ar{\scriptscriptstyle ext{ iny b}}}$, $(1,1)_0$	(\overline{a},c) , $(\overline{f 3},1)_{rac{1}{3}}$		
1	$_{egin{smallmatrix} \exists a extsf{, 1} \end{bmatrix}_{rac{1}{3}}}$	$_{\exists a}$, $(\overline{3},1)_{rac{1}{3}}$	$_{\exists b}$, $(1,1)_0$	(a,\overline{c}) , $(3,1)_{-rac{1}{3}}$	(a,\overline{c}) , $(3,1)_{-rac{1}{3}}$		
1	$ar{\scriptscriptstyle ar{\scriptscriptstyle heta}}_a$, $(3,1)_{-rac{1}{3}}$	$ar{\scriptscriptstyle \mathbb{H}}_a$, $(3,1)_{-rac{1}{3}}$	$_{\exists b}$, $(1,1)_0$	(\overline{a},c) , $(\overline{f 3},1)_{rac{1}{3}}$	(\overline{a},c) , $(\overline{f 3},1)_{rac{1}{3}}$		
1	$_{egin{smallmatrix} \exists a extsf{, 1} \end{bmatrix}_{rac{1}{3}}}$	$_{egin{smallmatrix} _{egin{smallmatrix} _{egin{smallmatrix} _{b} , \ (1,1)_0 \ \end{array} \end{cases}}$	(a,\overline{c}) , $(3,1)_{-rac{1}{3}}$				
1	$\bar{\exists}_a$, $(3,1)_{-\frac{1}{3}}$	$_{\exists b}$, $(1,1)_0$	(\overline{a},c) , $(\overline{3},1)_{\frac{1}{3}}$				
1	\exists_a , $(\overline{3}, 1)_{\frac{1}{3}}$	\square_b , $(1,3)_0$	\square_b , $(1,3)_0$	$_{\exists b}$, $(1,1)_0$	(a,\overline{c}) , $(3,1)_{-rac{1}{3}}$		
1	$\bar{\exists}_a$, $(3,1)_{-\frac{1}{3}}$	\square_b , $(1,3)_0$	${\scriptstyle \overline{\scriptstyle \Box}_b}$, $(1,3)_0$	$_{\exists b}$, $(1,1)_0$	(\overline{a},c) , $(\overline{3},1)_{rac{1}{3}}$		

	Multiplicity of Quivers					
Hypercharge	Total	Int. El.	H_d Candidate	No 4th Gen	$S_{\mu}H_{u}H_{d}$	$ u_L^c H_u L$
$(-rac{1}{3},-rac{1}{2},0)$	41	41	0	0	0	0
$(rac{1}{6},0,rac{1}{2})$	105	105	0	0	0	0
$(-rac{1}{3},-rac{1}{2},0,0)$	6974	697 4	4954	4938	1824	2066
$(-rac{1}{3},-rac{1}{2},0,rac{1}{2})$	70	0	0	0	0	0
$\left[(-rac{1}{3},-rac{1}{2},0,1) ight]$	4176	4176	1842	1792	0	80
$(rac{1}{6},0,rac{1}{2},0)$	480	16	0	0	0	0
$(rac{1}{6},0,rac{1}{2},rac{1}{2})$	77853	77853	54119	53654	16754	15524
$(rac{1}{6},0,rac{1}{2},rac{3}{2})$	265	265	0	0	0	0

- Remove quivers leading to fractionally charged color singlets
- Require H_d quiver-distinct from 3 *L*-doublets (necessary for *L*, *R*-parity conservation)
- Perturbative NMSSM-like singlet $(S_{\mu}H_{u}H_{d})$ (alternative: D-instanton)
- Perturbative ν_L^c -like singlet ($\nu_L^c H_u L$) (alternative: Dirac or Weinberg op by D-instanton)

Mainz (16/7/14)

	Multiplicity of Quivers				
Hypercharge	U(1)'	H_d Candidate	Fam. Univ	$S_{\mu}H_{u}H_{d}$	$LH_u u_L^c$
$(-rac{1}{3},-rac{1}{2},0)$	0	0	0	0	0
$(rac{1}{6},0,rac{1}{2})$	1	0	0	0	0
$(-rac{1}{3},-rac{1}{2},0,0)$	198	146	56	70	94
$(-rac{1}{3},-rac{1}{2},0,rac{1}{2})$	0	0	0	0	0
$\left(-rac{1}{3},-rac{1}{2},0,1 ight)$	78	16	10	0	5
$(rac{1}{6},0,rac{1}{2},0)$	0	0	0	0	0
$(rac{1}{6},0,rac{1}{2},rac{1}{2})$	1803	1466	629	610	600
$(rac{1}{6},0,rac{1}{2},rac{3}{2})$	82	0	0	0	0

- Quivers with additional U(1)' gauge symmetry
- ullet \lesssim 50% are family universal for q_L , L, u^c_L , d^c_L , and e^c_L
- Family non-universal (quiver distinct): GIM violation, FCNC (*B_s* anomalies?)

SM Rep	Total Multiplicity	4 th Gen. Removed	Shifted 4 th Gen. Also Removed
$(1,1)_0$	4556	4556	4556
$(1,3)_0$	1290	1290	1290
$(1,2)_{-\frac{1}{2}}$	631	619	619
$(1,2)_{\frac{1}{2}}$	619	619	619
$(\overline{3},1)_{\frac{1}{3}}$	478	466	458
$(3,1)_{-\frac{1}{3}}$	458	458	458
$(1,1)_1$	262	250	250
$(1,1)_{-1}$	250	250	250
$(1,2)_{-\frac{3}{2}}$	101	101	93
$(1,2)_{\frac{3}{2}}$	93	93	93
$(3,2)_{\frac{1}{6}}$	46	34	34
$(\overline{3},2)_{-\frac{1}{6}}$	34	34	34
$(\overline{3},1)_{-\frac{2}{3}}$	30	18	18
$(3,1)_{rac{2}{3}}$	18	18	18
$(1,3)_1$	8	8	0
$(3,2)_{-\frac{5}{6}}$	8	8	0
$\overline{(\overline{3},1)_{\frac{4}{3}}}$	8	8	0