Probing the TeV scale and beyond with EDMs

Junji Hisano (Nagoya Univ./IPMU)

Topical workshop "Probing the TeV scale and beyond" Johannes Gutenberg University in Mainz From June 30 to July 25, 2014

Contents

- Introduction
- Experimental and theoretical status of EDMs
- Sensitivities of EDMs to BSM
- Summary

Big issues in particle physics now

- 1. Is the discovered Higgs particle the SM one?
- 2. Where is BSM ? TeV scale or higher energy scale?

Picture is removed due to a copyright problem.

Japanese popular science magazine "Nikkei Science"

(Japanese edition of Scientific American)

8/2018

Special feature: Crisis in Particle Physics

- Supersymmetry on the edge From Lykken's article.
- Questioning Strategies to Ultimate Theory

Tools to probe new physics

EDMs

Magnetic and electric dipole moments (MDM and EDM) with spin **S**

$$H = -\mu \mathbf{B} \cdot \frac{\mathbf{S}}{S} - d \mathbf{E} \cdot \frac{\mathbf{S}}{S}$$

Under time(T) and space(P) reflections, EDM is T, P-odd.

$$P: \mathbf{E} \to -\mathbf{E}, \ \mathbf{B} \to +\mathbf{B}, \ \mathbf{S} \to +\mathbf{S}$$
$$T: \mathbf{E} \to +\mathbf{E}, \ \mathbf{B} \to -\mathbf{B}, \ \mathbf{S} \to -\mathbf{S}$$

EDMs are sensitive to CP violation under CPT inv.

EDMs are known to a good probe to CP violation in particle physics models.

EDMs sensitive to TeV-scale and beyond

Upper bounds on electron and neutron EDMs: $|d_e| < 8.7 \times 10^{-29} e cm_{(ACME, 13)}$ $|d_n| < 2.9 \times 10^{-26} e cm_{(Baker et al, 06)}$

Dim. analysis for EDM assuming source of CPV is FC:

$$d_e \sim e \frac{m_e}{M^2} = 10^{-23} e \operatorname{cm} \left(\frac{1 \operatorname{TeV}}{M}\right)^2$$
$$d_d \sim e \frac{m_d}{M^2} = 10^{-22} e \operatorname{cm} \left(\frac{1 \operatorname{TeV}}{M}\right)^2$$

(Renormalizable models give extra suppressions to EDMs by loop factors ($\sim O(10^{-(2-4)})$).)

EDM measurements would be important whether LHC finds new physics or not.

Searches for symmetry breaking

Global symmetries in SM are not exact in nature.

- CP violation (CKM in the SM) EDMs
- Lepton-flavor violation (neutrino oscillation)
 Charged lepton flavor-violating decay
- Lepton and/or baryon number violation (Baryon asymmetry in the universe)

0vββdecay Proton decay

Searches for symmetry breaking

Sensitivities of current experimental bounds on new physics scale (Λ). Only one loop factors are included for the loop processes. Small symmetry breaking parameters suppress the sensitivities.

CP phases are naturally O(1)?

CKM

1.5 🗆

excluded area has CL > 0.95

γ 1.0 $\Delta m_d \& \Delta m_s$ sin 2β 0.5 Δm_d ε_K Ц 0.0 α -0.5 ε -1.0 CKM fitter sol. w/ cos $2\beta < 0$ γ d. at CL > 0.95) -1.5 0.5 -0.5 0.0 1.0 1.5 2.0 -1.0 $\overline{\rho}$

EDM measurements

Schiff's theorem:

EDM for neutral syst. which composes of non-rel. point particles is zero. Neutral particle EDMs:

paramagnetic atoms (Tl, Fr..) /molecules (YbF, ThO, PbO..)
 Sensitive to electron EDM.

 $|d_e| < 1.4 \times 10^{-27} (YbF, 2012) \longrightarrow 8.7 \times 10^{-29} e cm (ThO, 2013)$ Future prospects: $|d_e| \sim 10^{-30} e cm$

diamagnetic atoms (Sensitive to T, P-odd nuclear force)
 |d_{Hg}|<3.1×10⁻²⁹ e cm, |d_{Xe}|<6.6×10⁻²⁷ e cm

• neutron

 $|d_n| < 2.9 \times 10^{-26} \text{ e cm}$

UCN experiments aim to $|d_n| \sim 10^{-(27-28)}$ e cm.

(Flavor-conserving) CP-violating interactions at parton level up to D=6

$$-\mathcal{L} = \frac{g_s^2 \bar{\theta}}{32\pi^2} G \tilde{G} + \sum_{\substack{f=u,d,s,e \\ \text{term}}} d_f \frac{i}{2} \bar{f}(\sigma \cdot F) \gamma_5 f + \sum_{\substack{q=u,d,s \\ \text{EDMs}}} d_f^c \frac{i}{2} \bar{q}(\sigma \cdot G) \gamma_5 q$$

$$+rac{1}{3}wGG ilde{G}+\sum_{f,f'=u,d,s,e}(ar{f}f)(ar{f}\gamma_5 f)$$

Weinberg op.

4-Fermi

• Wilson coefficients for CP-violating operators depend on CP phases in particle physics models.

(Flavor-conserving) CP-violating interactions at parton level $-\mathcal{L} = \frac{g_s^2 \bar{\theta}}{32\pi^2} G \tilde{G} + \sum_{\substack{f=u,d,s,e \\ \text{QCD}}} d_f \frac{i}{2} \bar{f}(\sigma \cdot F) \gamma_5 f + \sum_{\substack{q=u,d,s \\ \text{CEDM}}} d_f^c \frac{i}{2} \bar{q}(\sigma \cdot G) \gamma_5 q$

Strong-CP problem: $d_n \sim e\bar{\theta} \times 10^{-(16-17)} ecm$ The most promising solution is Peccei-Quinn mechanism. $\bar{\theta} = \langle S \rangle \simeq 0 \quad (S : axion)$

Though, the effective theta is generated if there is CP violation in QCD, since the tad pole term for S is generated. (Bigi&Uraltsev) For example, $\bar{\theta}^{\rm eff} = m_0^2/2 \sum_q d_q^c/m_q$. $(m_0^2 = 0.8 {\rm GeV}^2)$

Other proposal: spontaneous CPV, vanishing quark mass.

Evaluation of EDMs

Evaluation of EDMs

Evaluation of EDMs

Neutron EDM QCD sum rules evaluation (developed by Pospelov and Ritz)

Energy

 $d_n = 1^{+0.5}_{-0.5} (1.4(-0.25d_u + d_d) + 1.1e(0.5d_u^c + d_d^c))$

(Pospelov and Ritz)

(Hg,Xe, Ra, Rn)

 $d_n = 1^{+0.8}_{-0.4} (-0.2d_u + 0.8d_d + e(0.3d_u^c + 0.6d_d^c))$

(JH, Lee, Nagata, Shimizu, and also JH, Nagata, Fuyuto)

Here, those results are under Peccei-Quinn mechanism for strong CP problem. We used lattice outputs for LOCs. We still have factor 2 uncertainties.

(From the report of the "Flavour in the era of the LHC" Workshop, 88')

New type of EDM measurements

Charged particles in storage rings (new methods):

Strong motional E field for relativistic particles in B field. Measure of tilt of spin precession plane in E field.

proton/deuteron
 prospects: d_p~10⁻²⁹ ecm, d_D~10⁻²⁹ ecm.
 Anatomic study of hadronic EDMs would be possible.
 d_D=(d_p+d_n)+d_D^{NNπ}

muon

Prospects: $d_{\mu} \sim 10^{-21}$ ecm (ultimate case, 10^{-24} ecm) flavor-blind case: $d_{\mu} = (m_{\mu}/m_e)d_e < 2 \ 10^{-26}$ ecm Larger value might be possible in flavor-violating cases.

SM prediction

In the SM, origin of CP violation is a phase in Kobayashi-Maskawa matrix (except for QCD theta term). CPV obs. are prpto to Jarlskog (rephasing) invariant:

 $J_{\rm CP} = {\rm Im} V_{cs}^{\star} V_{us} V_{cd} V_{ud}^{\star} \sim 10^{-5}$

• Quark EDMs

 $d_d \simeq 10^{\text{-}34} \mbox{ e cm}$ (3loops at $O(G_F^2 \ \alpha_s)$)

- Neutron EDM
 d_n~ 10⁻⁽³¹⁻³²⁾ e cm (long-distance effect at O(G_F²))
- Electron EDM

 $d_e \sim 10^{-40} e cm (4 loops O(G_F^3 \alpha_s))$

Discovery of non-zero EDM means beyond the SM.

EDMs from BSM

Assuming maximal CP phases, one-loop diagrams for (C) EDMs give strong constraint to new-physics above the TeV scale, and even two-loop diagrams can also constrain new physics around TeV scale. CP phases in the supersymmetric standard model

SUSY breaking terms:

- Gaugino mass terms $M_a \ \lambda_a \lambda_a \ (a=1,2,3)$
- Higgsino mass term $\mu \ ilde{H}_u ilde{H}_d$
- Sfermion/Higgs mass terms $(m_{\tilde{f}}^2)_{ij}\tilde{f}_i^{\dagger}\tilde{f}_j \ (\tilde{f} = \tilde{q}_L, \tilde{u}_R, \tilde{d}_R, \tilde{l}_L, \tilde{e}_R, \ i, j = 1, 2, 3)$
- Higgs mixing mass term (B term) $B\mu H_u H_d$
- Trilinear coupling (A terms) $(m_f A_f)_{ij} \tilde{f}_{Li} \tilde{f}_{Ri} \ (f = u, d, e)$

CP phases in the supersymmetric standard model

SUSY breaking terms:

- Gaugino mass terms $M_a \lambda_a \lambda_a \ (a = 1, 2, 3)$
- Higgsino mass term $\mu H_u \tilde{H}_d$
- Sfermion/Higgs mass terms

$$(m_{\tilde{f}}^2)_{ij}\tilde{f}_i^{\dagger}\tilde{f}_j \ (\tilde{f} = \tilde{q}_L, \tilde{u}_R, \tilde{d}_R, \tilde{l}_L, \tilde{e}_R, \ i, j = 1, 2, 3)$$

- Higgs mixing mass term (B term) $(B\mu)H_uH_d$
- •Left-right mixing mass (A terms) $(m_f A_f)_{ij} \tilde{f}_{Li} \tilde{f}_{Ri} (f = u, d, e)$

F term SUSY breaking parameters are generically complex.

CP phases in the supersymmetric standard model

SUSY breaking terms:

- Gaugino mass terms $M_a \ \lambda_a \lambda_a \ (a=1,2,3)$
- Higgsino mass term $\mu \ ilde{H}_u ilde{H}_d$
- Sfermion/Higgs mass terms $(m_{\tilde{f}}^2)_{ij}\tilde{f}_i^{\dagger}\tilde{f}_j \ (\tilde{f} = \tilde{q}_L, \tilde{u}_R, \tilde{d}_R, \tilde{l}_L, \tilde{e}_R, \ i, j = 1, 2, 3)$
- Higgs mixing mass term (B term) $B\mu H_u H_d$
- •Left-right mixing mass (A terms) $(m_f A_f)_{ij} \tilde{f}_{Li} \tilde{f}_{Ri} \ (f = u, d, e)$

Off-diagonal terms in sfermion mass matrices are generically complex.

EDMs in supersymmetric standard model

In cMSSM, A and B parameters may have phases even after removing phases in gaugino and Higgsino masses, and they contribute to (C)EDMs at one-loop level. Assuming maximal CP violation and degenerate mass spectrum for SUSY particles, the mu term phase contributions are

$$d_e/e \sim 0.6 \times 10^{-26} \text{cm} \left(\frac{M_{SUSY}}{1 \text{TeV}}\right)^{-2} \tan\beta$$
$$d_d/e \sim d_d^c \sim 2 \times 10^{-25} \text{cm} \left(\frac{M_{SUSY}}{1 \text{TeV}}\right)^{-2} \tan\beta$$

EDMs in supersymmetric standard model

Light gauginos and/or Higgsino suppress EDMs, while it seems difficult to have SUSY SM below TeVs if CP phases are maximal.

Flavor-violation and EDM in SUSY SM (1)

 In SUSY SM, new flavor violations are introduced in squark and slepton mass matrices. When both left- and right-handed squark mass matrices have off-diagonal (flavor-violating) terms, the relative phase contributes to EDM

High-scale SUSY with generic flavor violation

In High-scale SUSY/miniSplit-SUSY model, sfermion masses are O(100)TeV while gaugino masses are around TeV. tan β ~1. Those suppresses EDMs. Even in the case, neutron EDM may be accessible to the model if generic flavor violation is assumed.

- McKeen, Pospelov, and Ritz
- Moroi and Nagai
- Altmannshofer, Harnik, Zupan

(Fuyuto, JH, Nagata, Tsumura. Anomalous dimension for CPV operators are evaluated in this paper.) 27

Flavor-violation and EDM in SUSY SM (2)

Anomalous flavor-changing charged Higgs interaction, induced by due to non-holomorphic correction, generates (C)EDMs when righthanded squarks have mixing.

10

200

800

600

1000

1200

1400

1600

1800 2000

M_H (GeV)

Higgs studies with EDMs

The discovered Higgs boson is the SM one ?

1, Higgs couplings to fermions and bosons are proportional to their masses?

- 2, Higgs boson is only one?
- 3, Higgs boson is CP even ?
- 4, Higgs boson interaction is flavor-conserving?
- 5, Higgs boson has new particles?

EDM measurements give hints for some of these questions.

Higgs-mediated Barr-Zee diagrams

When Higgs boson has CP-violating coupling with SM particles or new particles in BSM, the Barr-Zee diagrams at two-loop level generate (C)EDMs for quarks and leptons.

Higgs-mediated Barr-Zee diagrams

When Higgs boson has CP-violating coupling with SM particles or new particles in BSM, the Barr-Zee diagrams at two-loop level generate (C)EDMs for quarks and leptons.

New (charged) fermions coupled to (discovered) Higgs boson may contribute to both Higgs decay to 2 gammas and also EDMs.

New physics contribution to EDM and $h \rightarrow \gamma \gamma$

SU(2) mutiplet fermions (ψ), whose neutral component is the DM candidate, may have coupling with Higgs boson,

$$\mathcal{L}_{H} = -\frac{1}{2\Lambda} |H|^2 \ \bar{\psi}^c (1 + i\gamma_5 f) \psi + h.c..$$

(JH, Kobayashi, Mori, Senaha)

Blue lines: SI Cross section For DM direct Detection Red lines: Signal strength for $h \rightarrow \gamma \gamma$

- Gaugino-Higgsino system studied by Giudice and Romanino.
- Recent similar works:
 Fan and Reece.
 McKeen, Pospelov and Ritz.

....

New physics contribution to $h \rightarrow \gamma \gamma$ and EDMs SU(2) mutiplet fermions (ψ), whose neutral component is the DM candidate, may have coupling with Higgs boson,

$$\mathcal{L}_{H} = -\frac{1}{2\Lambda} |H|^2 \, \bar{\psi}^c (1 + i\gamma_5 f) \psi + h.c..$$

(JH, Kobayashi, Mori, Senaha)

- Lightest neutral state is assumed to be Majorana fermion.
- SU(2) triplet with Y=1 includes a electric charge 2 state, and EDM and h→γγ are enhanced.

Two-Higgs doublet models

Two-Higgs doublet models have CP phase in the potential, and Barr-Zee diagrams generate (C)EDMs.

In Two-Higgs doublet models Z₂ symmetry is introduced to suppress FCNC processes.

Scalar potential in softly broken Z₂ symmetry has one CP phase.

$$\begin{split} V = & m_1^2 H_1^{\dagger} H_1 + m_2^2 H_2^{\dagger} H_2 - \left(\left(\text{Re} m_3^2 + i \text{Im} m_3^2 \right) H_1^{\dagger} H_2 + (h.c.) \right) \\ &+ \frac{1}{2} \lambda_1 (H_1^{\dagger} H_1)^2 + \frac{1}{2} \lambda_2 (H_2^{\dagger} H_2)^2 + \lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1) \\ &+ \left(\lambda_5 e^{i2\phi} (H_1^{\dagger} H_2)^2 + (h.c.) \right). \end{split}$$

Two-Higgs doublet models

In Two-Higgs doublet models Z₂ symmetry is introduced to suppress FCNC processes. The 4 types of assignments are posiible

In typical cases, Yukawa coupling constants of H1 are larger than the SM ones, since $\langle H_2 \rangle >> \langle H_1 \rangle$ is expected. In the case, we may discriminate models with correlation among EDMs.

Pinch terms are added to EDMs

The pinch technique is used in order to make the Barr-Zee contribution gauge invariant. For example, following pinch contributions are added to diagrams of $h-\gamma-\gamma^*$ and $h-\gamma-Z^*$. The pinch contributions are about 5 % (Abe, JH, Kitahara, Tobioka).

Integrating out heavy quarks

Anomalous dimensions for (flavor-conserving) CPV operators up to D=6 are complete at one-loop level (JH, Tsumura, Yang). EDMs and CEDMs for light quarks are generated from 4 Fermi operators with heavy quark.

Neutron EDM in Two-Higgs doublet models

- Neutron EDM comes from CEDMs.
- For large tanβ, nEDM is suppressed in type I and X while it has the moderate dependence in type II and Y.
- Red region is excluded.

(Abe, JH, Kitahara, Tobioka)

Electron EDM in Two-Higgs doublet models

- For large tanβ, nEDM is suppressed in type I and Y while it has the moderate dependence in type II and X.
- Accidental cancellation appears in type II and X due to tau/bottom loops.
- Red region is excluded though we need to take care for large tanβ region. (4F contribution is not negligible in molecular EDM).

⁽Abe, JH, Kitahara,

Tobioka)

Summary

- EDMs are sensitive to CP violation in new physics at and beyond TeV scale. The measurements are complimentary to the energy-frontier physics, such as LHC. Due to current null results in new physics searches at LHC, importance of the EDM measurements is increasing.
- Measurements of various particles are important to probe different CP violating terms.
- Higgs boson properties can be constrained with EDMs induced by Barr-Zee two-loop diagrams.
- Evaluation of hadronic EDMs has large uncertainties, and more efforts are needed to reduce them.