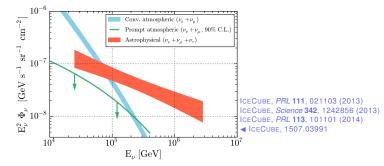
Revealing the flavor composition of astrophysical neutrinos: interplay of theory and experiment

Mauricio Bustamante

In collaboration with John Beacom and Walter Winter

Center for Cosmology and Astroparticle Physics (CCAPP) The Ohio State University

Crossroads of neutrino physics MITP, August 04, 2015



High-energy astrophysical neutrinos: they exist!

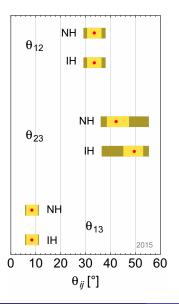
The era of neutrino astronomy has begun!

- IceCube has reported 54 events with 30 TeV - 2 PeV in 4 years

Diffuse per-flavor astrophysical flux [ICECUBE, 1507.03991]:

$$\Phi_{\nu} = \left(6.7^{+1.1}_{-1.2} \cdot 10^{-18}\right) \left(\frac{E}{100 \text{ TeV}}\right)^{-(2.5 \pm 0.09)} \text{ GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$$

Flavor composition of neutrinos: an open question


What is the proportion of ν_e , ν_μ , ν_τ in the diffuse flux?

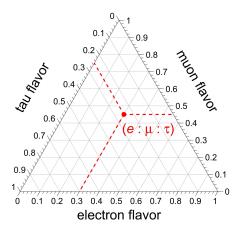
Knowing this can reveal two important pieces of information:

- the physical conditions at the neutrino sources; and
- whether there is new physics, and of what kind

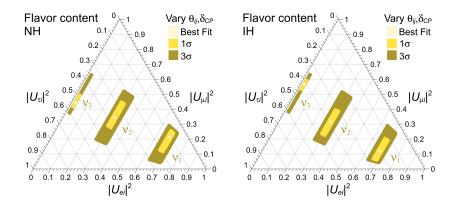
So it will pay off to explore what to expect from theory

[Barenboim, Quigg, PRD 67, 073024 (2003)] [Winter, PRD 88, 083007 (2013)] [Mena, Palomares, Vincent, PRL 113, 091103 (2014)] [Palomares, Vincent, Mena, PRD 91, 103008 (2015)] [Palladino, Pagliardol, Villante, Vissani, PRL 114, 171101 (2015)]

The neutrino mass hierarchy is unknown:


- Normal hierarchy (NH): ν_1 is lightest
- Inverted hierarchy (IH): ν₃ is lightest

Using latest fits from GONZÁLEZ-GARCÍA *et al.*, *JHEP* **1411**, 052 (2014):


- θ_{12} and θ_{13} are well-determined
- Little NH/IH difference for θ₁₂ and θ₁₃
- Large error and NH/IH difference for θ₂₃
- At 3σ, NH and IH regions are equal

"Flavor triangle" or Dalitz/Mandelstam plot

Assumes underlying unitarity: sum of projections on each axis is 1 How to read it: follow the tilt of the tick marks, *e.g.*,

Show the *e*, μ , and τ content of the ν_i via ternary plots:

Flavor mixing in high-energy astrophysical neutrinos

Probability of $\overline{\nu}_{\alpha} \rightarrow \overline{\nu}_{\beta}$ transition:

$$P_{\overline{\nu}_{\alpha} \to \overline{\nu}_{\beta}} = \delta_{\alpha\beta} - 4\sum_{k>j} \operatorname{Re}\left(J_{\alpha\beta jk}\right) \sin^{2}\left(\frac{\Delta m_{kj}^{2}L}{4E}\right) \pm 2\sum_{k>j} \operatorname{Im}\left(J_{\alpha\beta jk}\right) \sin\left(\frac{\Delta m_{kj}^{2}L}{2E}\right)$$

- For $E \sim 1$ PeV and $\Delta m_{kj}^2 \sim 10^{-4} 10^{-3}$ eV², $L_{\rm osc} \sim 10^{-10}$ Mpc
- Therefore, oscillations are very rapid
- They average out after only a few oscillations lengths:

$$sin^2\left(\ldots\right)\to 1/2\;,\;\;sin\left(\ldots\right)\to 0$$

Hence, for astrophysical neutrinos:

$$P_{\overline{\nu}_{\alpha} \to \overline{\nu}_{\beta}} = \sum_{i=1}^{3} |U_{\alpha i}|^2 |U_{\beta i}|^2 \quad \blacktriangleleft \text{ incoherent mixture of mass eigenstates}$$

Flavor ratios

Neutrino production at the source via pion decay:

$$oldsymbol{
ho}\gamma
ightarrow \Delta^+$$
(1232) $ightarrow \pi^+ n$ $\pi^+
ightarrow \mu^+
u_\mu
ightarrow oldsymbol{e}^+
u_e ar{
u}_\mu
u_\mu$

Flavor ratios at the source: $(f_e: f_\mu: f_\tau)_S \approx (1/3: 2/3: 0)$

At Earth, due to flavor mixing:

$$f_{\alpha,\oplus} = \sum_{\beta} P_{\beta\alpha} f_{\beta,\mathsf{S}} = \sum_{\beta} \left(\sum_{i=1}^{3} |U_{\alpha i}|^2 |U_{\beta i}|^2 \right) f_{\beta,\mathsf{S}}$$

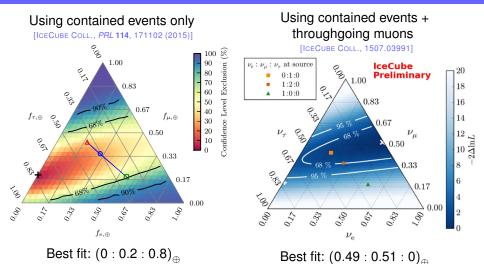
 $(1/3:2/3:0)_{S} \xrightarrow{\text{flavor mixing, NH, best-fit}} (0.36:0.32:0.32)_{\oplus}$

Other compositions at the source:

 $\begin{array}{rcl} (0:1:0)_{S} & \longrightarrow & (0.26:0.36:0.38)_{\oplus} \mbox{ (``muon damped'')} \\ (1:0:0)_{S} & \longrightarrow & (0.55:0.26:0.19)_{\oplus} \mbox{ (``neutron decay'')} \\ (1/2:1/2:0)_{S} & \longrightarrow & (0.40:0.31:0.29)_{\oplus} \mbox{ (``charmed decays'')} \end{array}$

Below $E_{\nu} \sim$ 5 PeV, there are two event topologies:

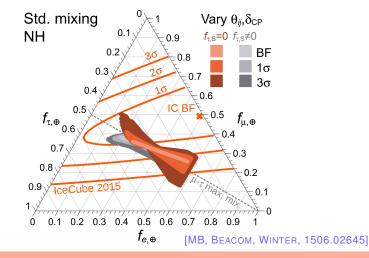
- Showers: generated by CC ν_e or ν_τ ; or by NC ν_x
- Muon tracks: generated by CC ν_μ


(Some muon tracks can be mis-reconstructed as showers)

At \gtrsim 5 PeV (no events so far), all of the above, plus:

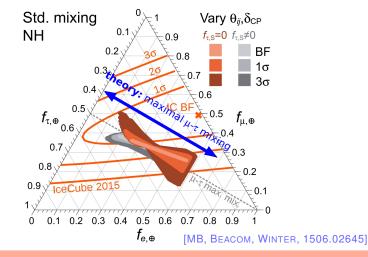
- Glashow resonance: CC v
 e e interactions at 6.3 PeV
- Double bangs: CC $\nu_{\tau} \rightarrow \tau \rightarrow \nu_{\tau}$

Flavor ratios must be inferred from the number of showers and tracks


Two IceCube analyses of flavor composition

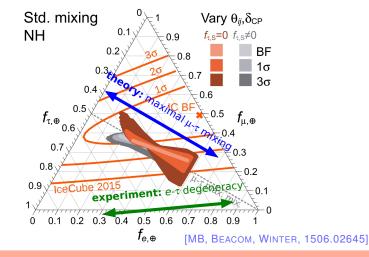
- Compatible with standard source compositions
- Bounds are weak need more data and better flavor-tagging

Flavor combinations at Earth from std. mixing

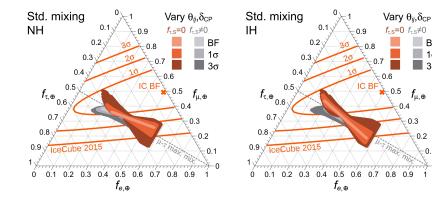

Assume unconstrained flavor composition at source (with and w/o ν_{τ}):

Std. mixing can access only $\sim 10\%$ of the possible combinations

Flavor combinations at Earth from std. mixing


Assume unconstrained flavor composition at source (with and w/o ν_{τ}):

Std. mixing can access only $\sim 10\%$ of the possible combinations


Flavor combinations at Earth from std. mixing

Assume unconstrained flavor composition at source (with and w/o ν_{τ}):

Std. mixing can access only $\sim 10\%$ of the possible combinations

Flavor combinations from flavor mixing: NH vs. IH

[MB, BEACOM, WINTER, 1506.02645]

BF

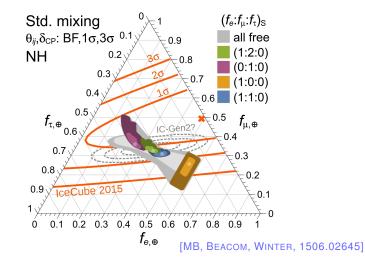
1σ

3σ

*f*_{μ,⊕}

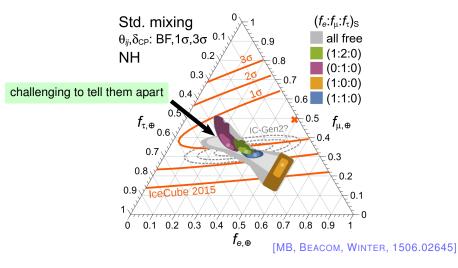
0.3

0.9

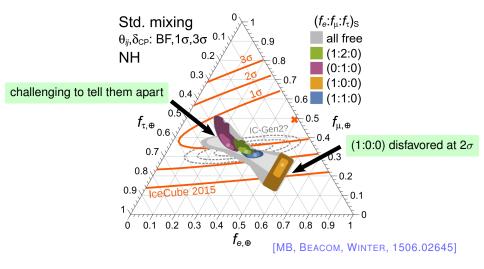

0.2

0.1

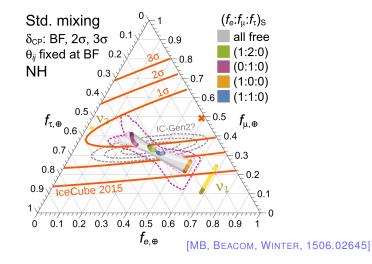
0.4


Selected source compositions

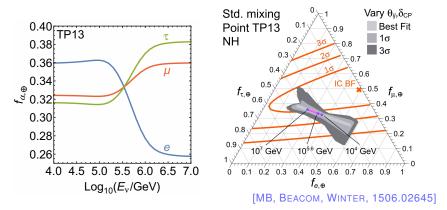
We can look at results for particular choices of ratios at the source:


Selected source compositions

We can look at results for particular choices of ratios at the source:


Selected source compositions

We can look at results for particular choices of ratios at the source:

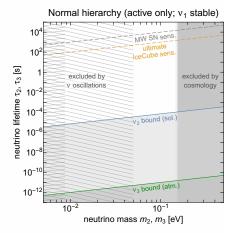

Perfect knowledge of mixing angles

In a few years, we might know all the mixing parameters except δ_{CP} :

Energy dependence of the composition at the source

Different ν production channels are accessible at different energies

- TP13: pγ model, target photons from co-accelerated electrons [HÜMMER et al., Astropart. Phys. 34, 205 (2010)]
- Equivalent to different sources types contributing to the diffuse flux
- Will be difficult to resolve


[Kashti, Waxman, PRL 95, 181101 (2005)] [Lipari, Lusignoli, Meloni, PRD 75, 123005 (2007)]

New physics: effect on the flavor composition

- New physics in the neutrino sector could affect the
 - production; and/or
 - propagation; and/or
 - detection
- Detection: probe NP in the ν interaction length via the angular dependence of the flux [MARFATIA, MCKAY, WEILER, 1502.06337]
- NP at production and propagation could modify the incoherent mixture of v₁, v₂, v₃
- Example: neutrino decay

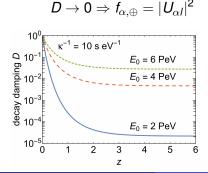
[Barenboim, Quigg, *PRD* **67**, 073024 (2003)] [Beacom, Bell, Hooper, Pakvasa, Weiler, *PRL* **90**, 181301 (2003)] [Maltoni, Winter, *JHEP* **07**, 064 (2008)] [Baerwald, MB, Winter, *JCAP* **1210**, 020 (2012)] [PAGLIAROLI, PALLADINO, VISSANI, VILLANTE 1506.02624]

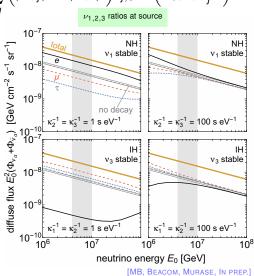
- SM: ν lifetimes are > 10³⁶ yr
- Via new-physics decay modes, they could be shorter
- Consider two possibilities:
 - $\blacktriangleright \text{ NH: } \nu_2, \nu_3 \rightarrow \nu_1$
 - $\blacktriangleright \text{ IH: } \nu_1, \nu_2 \rightarrow \nu_3$
- There are experimental bounds on the lifetime \(\tau_i / m_i\)

[[]MB, BEACOM, MURASE, IN PREP.]

Decay: effect on flavor ratios

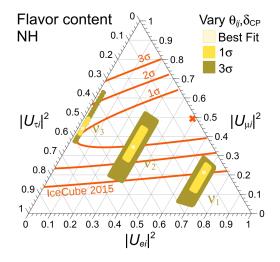
$$f_{\alpha,\oplus}\left(E_{0}, z, \kappa_{j}^{-1}\right) = |U_{\alpha l}|^{2} + \sum_{j \neq l} \left(|U_{\alpha j}|^{2} - |U_{\alpha l}|^{2}\right) f_{j,\text{S}} D\left(E_{0}, z, \kappa_{j}^{-1}\right)$$


$$I = 1 \text{ (NH), 3 (IH)} \quad j \neq l$$

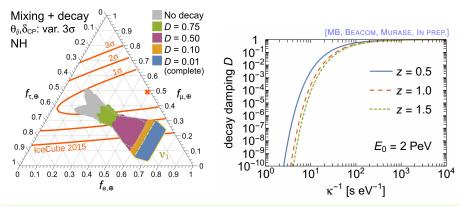

$$\nu_{1,2,3} \text{ ratios at source}$$

Damping due to decay:

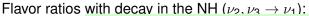
0 < *D* < 1

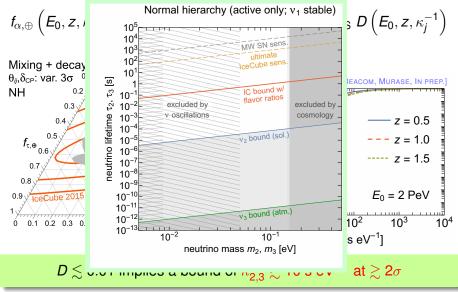

Complete decay:

Decay: using the flavor ratios


Flavor ratios are currently more sensitive to complete decay in the NH than in the IH:

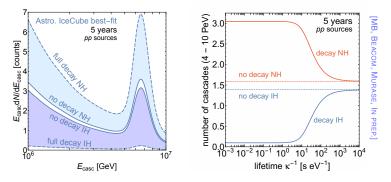
Decay: lifetime bounds with current IceCube data


Flavor ratios with decay in the NH ($\nu_2, \nu_3 \rightarrow \nu_1$):


$$f_{\alpha,\oplus}\left(E_{0}, z, \kappa_{j}^{-1}\right) = |U_{\alpha 1}|^{2} + \sum_{j=2,3} \left(|U_{\alpha j}|^{2} - |U_{\alpha 1}|^{2}\right) f_{j,S} D\left(E_{0}, z, \kappa_{j}^{-1}\right)$$

 $D \lesssim 0.01$ implies a bound of $\kappa_{2,3}^{-1} \gtrsim 10$ s eV⁻¹ at $\gtrsim 2\sigma$

Decay: lifetime bounds with current IceCube data

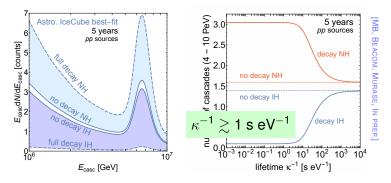


Around 6.3 PeV, the Glashow resonance is accessible:

 $\bar{\nu}_e + e \rightarrow W \rightarrow \text{ hadronic shower (BR = 67\%)}$

Three scenarios:

- Neutrinos are stable: we see the GR as a bump in the cascade rate
- Neutrinos decay in the NH: the bump is larger $(|U_{e1}|^2 \text{ is large})$
- Neutrinos decay in the IH: no or almost no cascades $(|U_{e3}|^2 \text{ is tiny})$

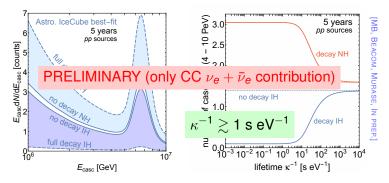


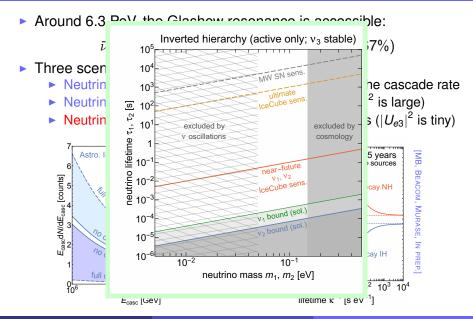
Around 6.3 PeV, the Glashow resonance is accessible:

 $\bar{\nu}_e + e \rightarrow W \rightarrow \text{ hadronic shower (BR = 67\%)}$

Three scenarios:

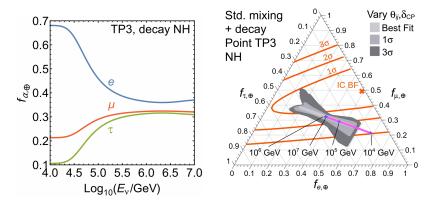
- Neutrinos are stable: we see the GR as a bump in the cascade rate
- Neutrinos decay in the NH: the bump is larger $(|U_{e1}|^2 \text{ is large})$
- Neutrinos decay in the IH: no or almost no cascades $(|U_{e3}|^2 \text{ is tiny})$



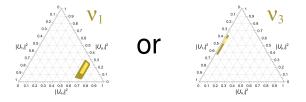

Around 6.3 PeV, the Glashow resonance is accessible:

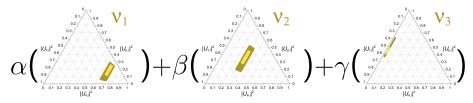
 $\bar{\nu}_e + e \rightarrow W \rightarrow \text{ hadronic shower (BR = 67\%)}$

Three scenarios:


- Neutrinos are stable: we see the GR as a bump in the cascade rate
- Neutrinos decay in the NH: the bump is larger $(|U_{e1}|^2 \text{ is large})$
- Neutrinos decay in the IH: no or almost no cascades $(|U_{e3}|^2 \text{ is tiny})$

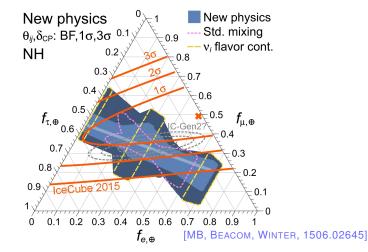
Decay: seeing the energy dependence?


- The effect of decay shows up at low energies
- ► e.g., for a model of AGN cores [HUMMER et al., Astropart. Phys. 34, 205 (2010)],


[MB, BEACOM, WINTER, 1506.02645]

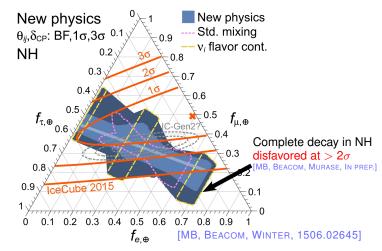
Decay: complete vs. incomplete

• Complete decay: only ν_1 (ν_3) reach Earth assuming NH (IH)



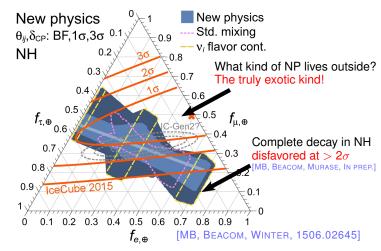
▶ Incomplete decay: incoherent mixture of ν_1 , ν_2 , ν_3 reaches Earth

New physics that changes the ν_i mixture


Region of all linear combinations of ν_1 , ν_2 , ν_3 :

This class of NP can access only $\sim 25\%$ of the possible combinations

New physics that changes the ν_i mixture


Region of all linear combinations of ν_1 , ν_2 , ν_3 :

This class of NP can access only $\sim 25\%$ of the possible combinations

New physics that changes the ν_i mixture

Region of all linear combinations of ν_1 , ν_2 , ν_3 :

This class of NP can access $\textit{only} \sim 25\%$ of the possible combinations

What kind of NP lives outside the blue region?

- > NP that changes the values of the mixing parameters, e.g.,
 - violation of Lorentz and CPT invariance

[BARENBOIM, QUIGG, PRD 67, 073024 (2003)] [MB, GAGO, PEÑA-GARAY, JHEP 1004, 005 (2010)]

violation of equivalence principle

[GASPERINI, PRD 39, 3606 (1989)] [GLASHOW et al., PRD 56, 2433 (1997)]

coupling to a torsion field

[DE SABBATA, GASPERINI, Nuovo. Cim. A65, 479 (1981)]

renormalization-group running of mixing parameters

[MB, GAGO, JONES, JHEP 1105, 133 (2011)]

- active-sterile mixing [AEIKENS et al., 1410.0408]
- flavor-violating physics
- ▶ $\nu \overline{\nu}$ mixing (if ν , $\overline{\nu}$ flavor ratios are considered separately)

New physics — of the truly exotic kind (I)

What kind of NP lives outside the blue region?

- > NP that changes the values of the mixing parameters, *e.g.*,
 - violation of Lorentz and CPT invariance

[BARENBOIM, QUIGG, PRD 67, 073024 (2003)] [MB, GAGO, PEÑA-GARAY, JHEP 100

violation of equivalence principle

[GASPERINI, PRD 39, 3606 (1989)] [GLASHOW et al., PRD 56, 2433 (1997)]

coupling to a torsion field

[DE SABBATA, GASPERINI, Nuovo. Cim. A65, 479 (1981)]

renormalization-group running of mixing parameters

[MB, GAGO, JONES, JHEP 1105, 133 (2011)]

- active-sterile mixing [AEIKENS et al., 1410.0408]
- flavor-violating physics
- $\nu \overline{\nu}$ mixing (if ν , $\overline{\nu}$ flavor ratios are considered separately)

New physics — of the *truly exotic* kind (II)

Add a new-physics term to the standard oscillation Hamiltonian:

$$H_{\rm tot} = H_{\rm std} + H_{\rm NP}$$

$$H_{\text{std}} = \frac{1}{2E} U_{\text{PMNS}}^{\dagger} \operatorname{diag} \left(0, \Delta m_{21}^{2}, \Delta m_{31}^{2} \right) U_{\text{PMNS}}$$
$$H_{\text{NP}} = \sum_{n} \left(\frac{E}{\Lambda_{n}} \right)^{n} U_{n}^{\dagger} \operatorname{diag} \left(O_{n,1}, O_{n,2}, O_{n,3} \right) U_{n}$$

n=1

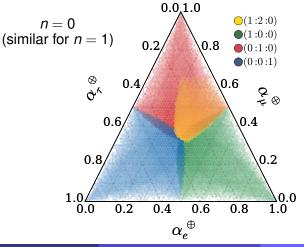
n = 0

- coupling to a torsion field
- CPT-odd Lorentz violation

- equivalence principle violation
- CPT-even Lorentz violation

 $\begin{array}{l} \mbox{Experimental upper bounds from atmospheric ν's:} \\ O_0 \lesssim 10^{-23} \mbox{ GeV} \qquad O_1/\Lambda_1 \lesssim 10^{-27} \mbox{ GeV} \end{array}$

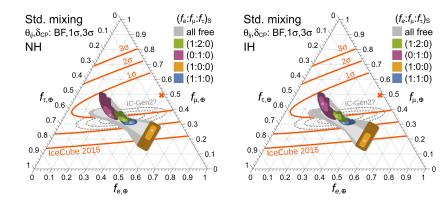
[MB, GAGO, PEÑA-GARAY, JHEP 1004, 005 (2010)]
 [ARGÜELLES, KATORI, SALVADÓ, 1506.02043]
 [ICECUBE COLL., PRD 82, 112003 (2010)]
 [SUPER-K COLL., PRD 91, 052003 (2015)]


New physics — of the *truly exotic* kind (III)

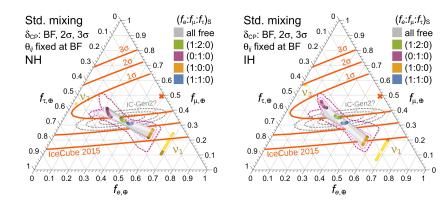
Truly exotic new physics is indeed able to populate the white region:

use current bounds on O_{n,i}

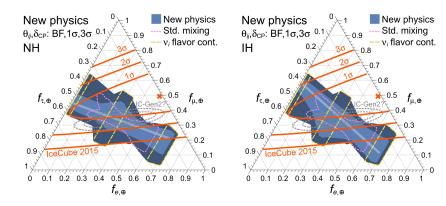
[ARGÜELLES, KATORI, SALVADÓ 1506.02043]


sample the unknown NP mixing angles

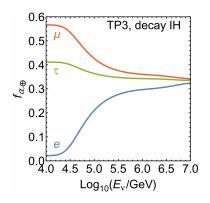
- The flavor composition is arguably the second-most interesting unknown after the identification of sources
- The space of allowed flavor compositions is surprisingly small:
 - Standard mixing: ~ 10% of all possibilities
 - ▶ v_i-mixing new physics: ~ 25% (e.g., decay)
- Only a broader class of new physics (*e.g.*, CPT violation) can access all compositions
- IceCube can improve the lifetime bounds in the NH (now!) and IH (soon!) by several orders of magnitude
- More, better data on the particle-physics and astrophysics fronts are needed (*e.g.*, IceCube-Gen2, DUNE)

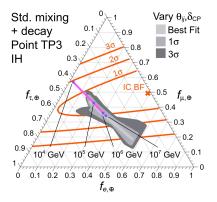

Backup slides

Selected source compositions: NH vs. IH



[[]MB, BEACOM, WINTER, 1506.02645]


Perfect knowledge of mixing angles: NH vs. IH



[[]MB, BEACOM, WINTER, 1506.02645]

[[]MB, BEACOM, WINTER, 1506.02645]

[MB, BEACOM, WINTER, 1506.02645]