Critical Aspects of Moduli Fixing

[Modular Invariance Approach to the Lepton and Quark Flavour Problems: from](https://indico.mitp.uni-mainz.de/event/350/) [Bottom-up to Top-down, MITP, Mainz, Germany](https://indico.mitp.uni-mainz.de/event/350/)

Based on:

V. Knapp-Pérez, X.-G. Liu, H.P. Nilles, S. Ramos-Sánchez & M.R., [Phys.Lett.B](https://inspirehep.net/literature/2655309) [844 \(2023\) 138106](https://inspirehep.net/literature/2655309)

Disclaimers Disclaimers

Before we start. . .

Apologies and disclaimers:

- **This talk will not have extensive references to all** activities that contribute to this exciting field, sorry!
- \bullet The \bullet symbols provide you with links to the respective references.
- \bullet I will suppress many details which are not essential to get the big picture.

Philosophy of this talk

Philosophy of this talk

Philosophy of this talk

Modular Building $\overline{\mathbf{u}}$

Philosophy of this talk \bullet

=

Modular Building $\overline{\mathbf{u}}$

Modular Model Building without Model(s)

☞ Modular flavor symmetries trade the VEV alignment conundrum for the question of stabilizing *τ*

- ☞ Modular flavor symmetries trade the VEV alignment conundrum for the question of stabilizing *τ*
- ☞ In many phenomenologically viable scenarios the best-fit values of *τ* occur close to, but slightly away from, the critical points $\tau = i$ or $\tau = \omega := e^{2\pi i/3}$

- ☞ Modular flavor symmetries trade the VEV alignment conundrum for the question of stabilizing *τ*
- ☞ In many phenomenologically viable scenarios the best-fit values of *τ* occur close to, but slightly away from, the critical points $\tau = i$ or $\tau = \omega := e^{2\pi i/3}$

[Critical Aspects of Moduli Fixing](#page-0-0) [Introduction](#page-1-0) Introduction

Modular flavor symmetries

- ☞ Modular flavor symmetries trade the VEV alignment conundrum for the question of stabilizing *τ*
- ☞ In many phenomenologically viable scenarios the best-fit values of *τ* occur close to, but slightly away from, the critical points $\tau = i$ or $\tau = \omega := e^{2\pi i/3}$

? Can these values be explained dynamically?

talks by **Junichiro Kawamura**, **George Leontaris**, **Kaito Nasu**, **Hajime Otsuka**, **Saúl Ramos-Sánchez**, **Nicole Righi** & **Xin Wang**

- ☞ Modular flavor symmetries trade the VEV alignment conundrum for the question of stabilizing *τ*
- ☞ In many phenomenologically viable scenarios the best-fit values of *τ* occur close to, but slightly away from, the critical points $\tau = i$ or $\tau = \omega := e^{2\pi i/3}$

talks by **Junichiro Kawamura**, **George Leontaris**, **Kaito Nasu**, **Hajime Otsuka**, **Saúl Ramos-Sánchez**, **Nicole Righi** & **Xin Wang**

☞ Challenge: find mechanisms that explain values of *τ* close to but not precisely at the critical points

String compactifications

☞ Violins: need to be built in such a way that the oscillating strings produce the right sounds

String compactifications

- ☞ Violins: need to be built in such a way that the oscillating strings produce the right sounds
- ☞ String compactifications: twist the strings in such a way that the excitations carry the quantum numbers of the standard model particles

Moduli Fixing

in

Realistic

String Compactifications

Strings and the real world

https://workshops.ift.uam-csic.es/uploads/poster/poster_congreso_299.pdf es/ inamhttps://workshops.ii

Strings and the real world

☞ Naive bottom-up models failing to fulfill consistency conditions are ruled out. . .

Strings and the real world

☞ Naive bottom-up models failing to fulfill consistency conditions are ruled out. . .

and so are top-down models which are inconsistent with observation

☞ Heterotic orbifolds have a long and rich history in providing us with potentially realistic models

☞ Heterotic orbifolds have a long and rich history in providing us with potentially realistic models

 $\overline{\mathcal{C}}$ [Ibáñez, Kim, Nilles & Quevedo \[1987\]](#page-173-0);...; $\overline{\mathcal{C}}$ [Ramos-Sánchez & MR \[2024\]](#page-176-0)

- ☞ Explicit MSSM models with the following ingredients exist:
	- exactly 3 generations

☞ Heterotic orbifolds have a long and rich history in providing us with potentially realistic models

 \overline{G} [Ibáñez, Kim, Nilles & Quevedo \[1987\]](#page-173-0);...; \overline{G} [Ramos-Sánchez & MR \[2024\]](#page-176-0)

- ☞ Explicit MSSM models with the following ingredients exist:
	- exactly 3 generations (vector-like exotics can be consistently decoupled)
	- no (fractionally charged or other) exotics

☞ Heterotic orbifolds have a long and rich history in providing us with potentially realistic models

 \overline{G} [Ibáñez, Kim, Nilles & Quevedo \[1987\]](#page-173-0);...; \overline{G} [Ramos-Sánchez & MR \[2024\]](#page-176-0)

- ☞ Explicit MSSM models with the following ingredients exist:
	- exactly 3 generations
	- no (fractionally charged or other) exotics
	- a "hidden" gauge group with a condensation scale suitable to explain TeV-scale soft masses

☞ Heterotic orbifolds have a long and rich history in providing us with potentially realistic models

 \overline{G} [Ibáñez, Kim, Nilles & Quevedo \[1987\]](#page-173-0);...; \overline{G} [Ramos-Sánchez & MR \[2024\]](#page-176-0)

- ☞ Explicit MSSM models with the following ingredients exist:
	- exactly 3 generations
	- no (fractionally charged or other) exotics
	- a "hidden" gauge group with a condensation scale suitable to explain TeV-scale soft masses
	- just one pair of of Higgs with the μ term of the order of the soft masses

☞ Heterotic orbifolds have a long and rich history in providing us with potentially realistic models

 $\overline{\mathcal{C}}$ [Ibáñez, Kim, Nilles & Quevedo \[1987\]](#page-173-0);...; $\overline{\mathcal{C}}$ [Ramos-Sánchez & MR \[2024\]](#page-176-0)

- ☞ Explicit MSSM models with the following ingredients exist:
	- exactly 3 generations
	- no (fractionally charged or other) exotics
	- a "hidden" gauge group with a condensation scale suitable to explain TeV-scale soft masses
	- just one pair of of Higgs with the μ term of the order of the soft masses
	- proton decay sufficiently suppressed

☞ Heterotic orbifolds have a long and rich history in providing us with potentially realistic models

 $\overline{\mathcal{C}}$ [Ibáñez, Kim, Nilles & Quevedo \[1987\]](#page-173-0);...; $\overline{\mathcal{C}}$ [Ramos-Sánchez & MR \[2024\]](#page-176-0)

- ☞ Explicit MSSM models with the following ingredients exist:
	- exactly 3 generations
	- no (fractionally charged or other) exotics
	- a "hidden" gauge group with a condensation scale suitable to explain TeV-scale soft masses
	- just one pair of of Higgs with the μ term of the order of the soft masses
	- proton decay sufficiently suppressed

R [symmetries](#page-109-0)

☞ Heterotic orbifolds have a long and rich history in providing us with potentially realistic models

 $\overline{\mathcal{C}}$ [Ibáñez, Kim, Nilles & Quevedo \[1987\]](#page-173-0);...; $\overline{\mathcal{C}}$ [Ramos-Sánchez & MR \[2024\]](#page-176-0)

- ☞ Explicit MSSM models with the following ingredients exist:
	- exactly 3 generations
	- no (fractionally charged or other) exotics
	- a "hidden" gauge group with a condensation scale suitable to explain TeV-scale soft masses
	- just one pair of of Higgs with the μ term of the order of the soft masses
	- proton decay sufficiently suppressed
	- realistic top Yukawa coupling

☞ Heterotic orbifolds have a long and rich history in providing us with potentially realistic models

 $\overline{\mathcal{C}}$ [Ibáñez, Kim, Nilles & Quevedo \[1987\]](#page-173-0);...; $\overline{\mathcal{C}}$ [Ramos-Sánchez & MR \[2024\]](#page-176-0)

- ☞ Explicit MSSM models with the following ingredients exist:
	- exactly 3 generations
	- no (fractionally charged or other) exotics
	- a "hidden" gauge group with a condensation scale suitable to explain TeV-scale soft masses
	- just one pair of of Higgs with the μ term of the order of the soft masses
	- proton decay sufficiently suppressed
	- realistic top Yukawa coupling
	- pseudo-anomalous $U(1)$ symmetry

☞ Heterotic orbifolds have a long and rich history in providing us with potentially realistic models

 \overline{C} [Ibáñez, Kim, Nilles & Quevedo \[1987\]](#page-173-0);...; \overline{C} [Ramos-Sánchez & MR \[2024\]](#page-176-0)

- ☞ Explicit MSSM models with the following ingredients exist:
	- exactly 3 generations
	- no (fractionally charged or other) exotics
	- a "hidden" gauge group with a condensation scale suitable to explain TeV-scale soft masses
	- just one pair of of Higgs with the μ term of the order of the soft masses
	- proton decay sufficiently suppressed
	- realistic top Yukawa coupling
	- pseudo-anomalous $U(1)$ symmetry
- ☞ In order to make these statements we need to make sure that the compact dimensions are stabilized at appropriate sizes

Appropriate compactification radii

cf. e.g. ⁷ [Dienes \[1997\]](#page-173-1)

☞ tension between *M*GUT ≃ few · 10¹⁶GeV and typical compactification radii

cf. e.g. [W](http://inspirehep.net/search?p=Dienes:1996du) [Dienes \[1997\]](#page-173-0)

- ☞ tension between *M*GUT ≃ few · 10¹⁶GeV and typical compactification radii
- ☞ relation between Newton's constant and *α*GUT for isotropic \blacksquare compactifications \blacksquare

cf. e.g. [W](http://inspirehep.net/search?p=Dienes:1996du) [Dienes \[1997\]](#page-173-0)

- ☞ tension between *M*GUT ≃ few · 10¹⁶GeV and typical compactification radii
- ☞ relation between Newton's constant and *α*GUT for isotropic \blacksquare [W](http://inspirehep.net/search?p=Witten:1996mz)itten [1996];...

$$
G_{\rm N} = \frac{\alpha_{\rm GUT} \, \alpha'}{4} \quad \text{implying that } G_{\rm N} \gtrsim \frac{\alpha_{\rm GUT}^{4/3}}{M_{\rm GUT}^2}
$$

☞ Way out: anisotropic compactifications one or two radii $\sim \frac{1}{M}$ $\frac{1}{M_{\text{GUT}}}$ and other radii $\sim \frac{1}{M_{\text{stu}}}$ $M_{\rm string}$

cf. e.g. [W](http://inspirehep.net/search?p=Dienes:1996du) [Dienes \[1997\]](#page-173-0)

- ☞ tension between *M*GUT ≃ few · 10¹⁶GeV and typical compactification radii
- ☞ relation between Newton's constant and *α*GUT for isotropic \blacksquare [W](http://inspirehep.net/search?p=Witten:1996mz)itten [1996];...

$$
G_{\rm N} = \frac{\alpha_{\rm GUT} \, \alpha'}{4} \quad \text{implying that } G_{\rm N} \gtrsim \frac{\alpha_{\rm GUT}^{4/3}}{M_{\rm GUT}^2}
$$

Use the following equations:

\nUse the following equations:

\n
$$
\text{Use the following equations}
$$
\n
$$
\text{Use the equations}
$$
\n $$

cf. e.g. [W](http://inspirehep.net/search?p=Dienes:1996du) [Dienes \[1997\]](#page-173-0)

- ☞ tension between *M*GUT ≃ few · 10¹⁶GeV and typical compactification radii
- ☞ relation between Newton's constant and *α*GUT for isotropic \blacksquare [W](http://inspirehep.net/search?p=Witten:1996mz)itten [1996];...

$$
G_{\rm N} = \frac{\alpha_{\rm GUT} \, \alpha'}{4} \quad \text{implying that } G_{\rm N} \gtrsim \frac{\alpha_{\rm GUT}^{4/3}}{M_{\rm GUT}^2}
$$

For example, the function
$$
W
$$
 is a function of W and W is a function of W and W is a function of W with W and W is a function of W with W and W is a function of W with W and W is a function of W with W and W is a function of W with W and W is a function of W with W and W is a function of W with W and W are a function of W with W and W are a function of W with W and W are a function of W with W and W are a function of W with W and W are a function of W with W and W are a function of W and <

cf. e.g. C [McAllister & Quevedo \[2023\]](#page-175-0)

☞ Ideally we would have a dynamical reason why the 10D string compactifies **6 of its dimensions** e.g. α [Brandenberger & Vafa \[1989\]](#page-172-0)

cf. e.g. C [McAllister & Quevedo \[2023\]](#page-175-0)

☞ Ideally we would have a dynamical reason why the 10D string compactifies **6 of its dimensions** e.g. σ [Brandenberger & Vafa \[1989\]](#page-172-0)

☞ This is very hard. . .

cf. e.g. ⁷ [McAllister & Quevedo \[2023\]](#page-175-0)

- $\sqrt{2}$ Ideally we would have a dynamical reason why the 10D string compactifies $\overline{6}$ of its dimensions e.g. \overline{C} [Brandenberger & Vafa \[1989\]](#page-172-0)
- ☞ This is very hard. . .
- ☞ What we can do is to assume that 6 dimensions are compact and then show that the fields describing the internal geometry get stabilized at appropriate values

cf. e.g. C [McAllister & Quevedo \[2023\]](#page-175-0)

- $\sqrt{2}$ Ideally we would have a dynamical reason why the 10D string compactifies $\overline{6}$ of its dimensions e.g. \overline{C} [Brandenberger & Vafa \[1989\]](#page-172-0)
- ☞ This is very hard. . .
- ☞ What we can do is to assume that 6 dimensions are compact and then show that the fields describing the internal geometry get stabilized at appropriate values
- ☞ In practice even this is too hard

cf. e.g. C [McAllister & Quevedo \[2023\]](#page-175-0)

- ☞ Ideally we would have a dynamical reason why the 10D string compactifies $\overline{6}$ of its dimensions e.g. \overline{C} [Brandenberger & Vafa \[1989\]](#page-172-0)
- ☞ This is very hard. . .
- ☞ What we can do is to assume that 6 dimensions are compact and then show that the fields describing the internal geometry get stabilized at appropriate values
- ☞ In practice even this is too hard
- **►** Let's just toy with one geometric modulus plus dilaton

☞ Observed hierarchy: *M*P*/m^W* ∼ 10¹⁷

☞ Observed hierarchy: *M*P*/m^W* ∼ 10¹⁷

☞ Observed hierarchy: *M*P*/m^W* ∼ 10¹⁷

☞ Compelling answer: scale of supersymmetry breakdown set by dimensional transmutation

& [W](http://inspirehep.net/search?p=Witten:1981nf)itten [1981];...

☞ Observed hierarchy: *M*P*/m^W* ∼ 10¹⁷

☞ Compelling answer: scale of supersymmetry breakdown set by dimensional transmutation

Why? VV ny!

& [W](http://inspirehep.net/search?p=Witten:1981nf)itten [1981];...

 $\Lambda \sim M_{\rm P} \, \exp \left(-b/g^2\right)$

 $\mathcal{O}(10)$

RG invariant scale

 $\mathcal{O}(1)$ coupling

☞ Observed hierarchy: *M*P*/m^W* ∼ 10¹⁷

☞ Compelling answer: scale of supersymmetry breakdown set by dimensional transmutation

& [W](http://inspirehep.net/search?p=Witten:1981nf)itten [1981];...

 $\Lambda \sim M_{\rm P} \, \exp(-b/g^2)$

☞ Observed hierarchy: *M*P*/m^W* ∼ 10¹⁷

Why? VV ny!

& [W](http://inspirehep.net/search?p=Witten:1981nf)itten [1981];...

$$
\Lambda \sim M_{\rm P} \, \exp\left(-b/g^2\right)
$$

► hierarchically small gravitino mass and the control of [Nilles \[1982\]](#page-175-1);... $m_W \sim m_{3/2} \sim \frac{\Lambda^3}{M^2}$ $M_{\rm P}^2$. . . provided that SUSY is broken

■ It is surprisingly hard to construct a global supersymmetric model which has no supersymmetric ground state

see e.g. C [Shadmi & Shirman \[2000\]](#page-176-2)

- ☞ It is surprisingly hard to construct a global supersymmetric model which has no supersymmetric ground state see e.g. C [Shadmi & Shirman \[2000\]](#page-176-2)
- ☞ However, very simple settings of supersymmetric QCD have **metastable** vacua which break SUSY α [Intriligator, Seiberg & Shih \[2006\]](#page-173-1);...

☞ It is surprisingly hard to construct a global supersymmetric model which has no supersymmetric ground state

see e.g. & [Shadmi & Shirman \[2000\]](#page-176-2)

☞ However, very simple settings of supersymmetric QCD have **metastable** vacua which break SUSY

[W](http://inspirehep.net/search?p=Intriligator:2006dd) [Intriligator, Seiberg & Shih \[2006\]](#page-173-1);. . .

Effective description around metastable minimum: [W](http://inspirehep.net/search?p=Intriligator:2007cp)hiteligator & Seiberg [2007]

$$
K_{\text{ISS,eff}} = X^{\dagger} X - \frac{(X^{\dagger} X)^2}{\Lambda_{\text{ISS}}^2}
$$

$$
\mathscr{W}_{\text{ISS,eff}} = f_X X
$$

local description
of CW potential

☞ It is surprisingly hard to construct a global supersymmetric model which has no supersymmetric ground state

see e.g. & [Shadmi & Shirman \[2000\]](#page-176-2)

☞ However, very simple settings of supersymmetric QCD have **metastable** vacua which break SUSY

[W](http://inspirehep.net/search?p=Intriligator:2006dd) [Intriligator, Seiberg & Shih \[2006\]](#page-173-1);. . .

☞ Effective description around metastable minimum: [W](http://inspirehep.net/search?p=Intriligator:2007cp) [Intriligator & Seiberg \[2007\]](#page-173-2)

$$
K_{\rm ISS, eff} = X^{\dagger} X - \frac{(X^{\dagger} X)^2}{\Lambda_{\rm ISS}^2}
$$

$$
\mathscr{W}_{\rm ISS, eff} = f_X X
$$

. . . works for a fixed gauge coupling. . .

Problem with string theory embedding

cf. talk by **Nicole Righi**

■ However: embedding into string theory \sim run-away problem

Problem with string theory embedding

cf. talk by **Nicole Righi**

■ However: embedding into string theory ∧ run-away problem

[W](http://inspirehep.net/search?p=Kachru:2003aw) [Kachru, Kallosh, Linde & Trivedi \[2003\]](#page-174-0)

[W](http://inspirehep.net/search?p=Kachru:2003aw) [Kachru, Kallosh, Linde & Trivedi \[2003\]](#page-174-0)

13 KKLT type proposal:
$$
\begin{cases} K_{\text{toy KKLT}} = -\ln(S + \overline{S}) \\ \mathscr{W}_{\text{toy KKLT}} = c - B e^{-bS} \end{cases}
$$

☞ Gravitino mass: *m*3*/*² ∼ *c*

137 KKLT type proposal:
$$
\begin{cases} K_{\text{toy KKLT}} = -\ln(S + \overline{S})^{\frac{1}{\mathcal{S}^{\mathcal{S}}}}}}}}}}}}}}}}}.
$$

- rs Gravitino mass: $m_{3/2}$ \sim c $\quad \frac{m_{3/2} \simeq \text{TeV}}{ }$ \qquad $|c| \sim 10^{-15}$
- ☞ Philosophy of flux compactifications: many vacua, in some of them *c* might be small by accident

[W](http://inspirehep.net/search?p=Kachru:2003aw) [Kachru, Kallosh, Linde & Trivedi \[2003\]](#page-174-0)

$$
\text{W KKLT type proposal: } \begin{cases} K_{\text{toy KKLT}} = -\ln(S + \overline{S}) \\ \mathcal{W}_{\text{toy KKLT}} = c - B e^{-bS} \end{cases}
$$

$$
\text{For a variable mass: } m_{3/2} \sim c \quad \xrightarrow{m_{3/2} \simeq \text{TeV}} \quad |c| \sim 10^{-15}
$$

- ☞ Philosophy of flux compactifications: many vacua, in some of them *c* might be small by accident
- ☞ Alternative proposal: hierarchically small expectation of the perturbative superpotential due to an [approximate](sec:RSymmetries) $U(1)_R$ symmetry

☞ The overwhelming majority of potentially realistic heterotic orbifold models has a Fayet–Iliopoulos (FI) *D*-term

$$
\xi_{\rm FI}=\frac{{\rm tr}\,q_{\rm anom}}{192\pi^2}M_{\rm P}^2
$$

 \blacksquare The overwh $\mathcal{O}(100)$ ajority of potentially realistic heterotic orbifold models has a Fayet–Iliopoulos (FI) *D*-term

$$
\xi_{\rm FI} = \frac{\mathrm{tr}\, q_{\rm anom}}{192\pi^2} M_{\rm P}^2 ~\sim \vartheta_{\rm Cabibbo}^2\, M_{\rm P}^2
$$

☞ The overwhelming majority of potentially realistic heterotic orbifold models has a Fayet–Iliopoulos (FI) *D*-term

$$
\xi_{\rm FI} = \frac{{\rm tr}\, q_{\rm anom}}{192\pi^2} M_{\rm P}^2 \sim \vartheta_{\rm Cabibbo}^2\, M_{\rm P}^2
$$

☞ This does not signal an inconsistency but simply means that some "matter" fields have to acquire VEVs of the order $\vartheta_{\rm Cabibbo} M_{\rm P}$

[W](http://inspirehep.net/search?p=Atick:1987gy) [Atick, Dixon & Sen \[1987\]](#page-172-1)

☞ The overwhelming majority of potentially realistic heterotic orbifold models has a Fayet–Iliopoulos (FI) *D*-term

$$
\xi_{\rm FI} = \frac{\text{tr} \, q_{\text{anom}}}{192 \pi^2} M_{\rm P}^2 \sim \vartheta_{\text{Cabilbo}}^2 \, M_{\rm P}^2
$$

☞ This does not signal an inconsistency but simply means that some "matter" fields have to acquire VEVs of the order $\vartheta_{\rm Cabibbo} M_{\rm P}$

[W](http://inspirehep.net/search?p=Atick:1987gy) [Atick, Dixon & Sen \[1987\]](#page-172-1)

☞ This gives rise to Froggatt–Nielsen type scenarios

[W](http://inspirehep.net/search?p=Binetruy:1996xk) [Binétruy, Lavignac & Ramond \[1996\]](#page-172-2)

☞ The overwhelming majority of potentially realistic heterotic orbifold models has a Fayet–Iliopoulos (FI) *D*-term

$$
\xi_{\rm FI} = \frac{\text{tr} q_{\text{anom}}}{192\pi^2} M_{\rm P}^2 \sim \vartheta_{\text{Cabiibo}}^2 M_{\rm P}^2
$$

☞ This does not signal an inconsistency but simply means that some "matter" fields have to acquire VEVs of the order $\vartheta_{\rm Cabibbo} M_{\rm P}$

```
W Atick, Dixon & Sen [1987]
```
☞ This gives rise to Froggatt–Nielsen type scenarios

[W](http://inspirehep.net/search?p=Binetruy:1996xk) [Binétruy, Lavignac & Ramond \[1996\]](#page-172-2)

☞ Given that virtually all "matter" fields carry some nontrivial modular weights, this means that modular symmetry is broken spontaneously by the VEVs needed to cancel the FI term

Example 18 The exp + const[an](http://inspirehep.net/search?p=Kappl:2008ie)t scheme allows us to fix the dilaton in an adS
supersymmetric vacuum
 $\frac{1}{\sqrt{2}}$ Kachru, Kallosh, Linde & Trivedi [2003];... Supersymmetric vacuum

B² [Kachru, Kallosh, Linde & Trivedi \[2003\]](#page-174-0)...

Kachru, Kallosh, Linde & Trivedi [2003];...

Example SUSY breaking yields a positive contribution to the vacuum energy
 Example 1909 at latiligator, Seiberg & Shih [2006]: **supersymmetric vacuum [W](http://inspirehep.net/search?p=Kachru:2003aw) C C** Intriligator, Seiberg & Shih [2006];... uum energy Nielsen. . . ^W Binétruy, Lavignac & Ramond [1996];. . . yield a tiny constant ^W Kappl, Nilles, Ramos-Sánchez, MR, Schmidt-Hoberg & Vaudrevange [2009];. . . matter field VEVs

Example 12005 Uplifting via matter fields leads to a distinctive pattern of soft masses
Examples & MR [2006];...

 G Lebedev, Nilles & MR $[2006]$;...

क The FI term induces VEVs of matter fields

Example 18 Among other things this leads to flavor hierarchies a la Froggatt-
Nielsen...
 α Binétruy, Lavignac & Ramond [1996]... **S** Binétruy, Lavignac & Ramond [1996]:... Nielsen...

Example 13 Moderate hierarchy gets enh[an](http://inspirehep.net/search?p=Kappl:2008ie)ced by approximate R symmetries to yield a tiny constant R R _{Aappl, Nilles, Ramos-Sánchez,} MR, Schmidt-Hoberg & Vaudrevange [2009]... yield a tiny constant and Kappl, Nilles, Ramos-Sánchez, MR, Schmidt-Hoberg & Vaudrevange [2009];... yield a tiny consta

ख्ड ...[an](http://inspirehep.net/search?p=Kappl:2008ie)d it leads to a spontaneous breakdown of modular invariance by
matter field VEVs matter field VEVs **Show that the Second Second**

Example 3 As we shall see, these effects c[an](http://inspirehep.net/search?p=Kappl:2008ie) move the modulus τ slightly away from the symmetry enhan[ced points](#page-174-1) from the symmetry enhanced points

[W](http://inspirehep.net/search?p=Font:1990nt) [Font, Ibáñez, Lüst & Quevedo \[1990\]](#page-173-1); [W](http://inspirehep.net/search?p=Nilles:1990jv) [Nilles & Olechowski \[1990\]](#page-176-0); [W](http://inspirehep.net/search?p=Cvetic:1991qm) [Cvetic, Font, Ibanez, Lüst & Quevedo \[1991\]](#page-172-1);. . .

☞ Modular covariant superpotential describing gaugino condensate

$$
\mathscr{W}_{\text{gc}}(S,\tau) = \frac{\Omega(S) H(\tau)}{\eta^6(\tau)}
$$

Dedekind

$$
\eta\text{-function}
$$

[W](http://inspirehep.net/search?p=Font:1990nt) [Font, Ibáñez, Lüst & Quevedo \[1990\]](#page-173-1); [W](http://inspirehep.net/search?p=Nilles:1990jv) [Nilles & Olechowski \[1990\]](#page-176-0); [W](http://inspirehep.net/search?p=Cvetic:1991qm) [Cvetic, Font, Ibanez, Lüst & Quevedo \[1991\]](#page-172-1);. . .

☞ Modular covariant superpotential describing gaugino condensate

$$
\mathscr{W}_{\text{gc}}(S,\tau)=\frac{\Omega(S)\,H(\tau)}{\eta^6(\tau)}
$$

☞ Ingredients

$$
\Omega(S) = B e^{-bS}
$$

$$
\beta
$$
-function coefficient

[W](http://inspirehep.net/search?p=Font:1990nt) [Font, Ibáñez, Lüst & Quevedo \[1990\]](#page-173-1); [W](http://inspirehep.net/search?p=Nilles:1990jv) [Nilles & Olechowski \[1990\]](#page-176-0); [W](http://inspirehep.net/search?p=Cvetic:1991qm) [Cvetic, Font, Ibanez, Lüst & Quevedo \[1991\]](#page-172-1);. . .

☞ Modular covariant superpotential describing gaugino condensate

$$
\mathscr{W}_{\text{gc}}(S,\tau)=\frac{\Omega(S)\,H(\tau)}{\eta^6(\tau)}
$$

☞ Ingredients

[W](http://inspirehep.net/search?p=Font:1990nt) [Font, Ibáñez, Lüst & Quevedo \[1990\]](#page-173-1); [W](http://inspirehep.net/search?p=Nilles:1990jv) [Nilles & Olechowski \[1990\]](#page-176-0); [W](http://inspirehep.net/search?p=Cvetic:1991qm) [Cvetic, Font, Ibanez, Lüst & Quevedo \[1991\]](#page-172-1);. . .

☞ Modular covariant superpotential describing gaugino condensate

$$
\mathscr{W}_{\text{gc}}(S,\tau)=\frac{\Omega(S)\,H(\tau)}{\eta^6(\tau)}
$$

☞ Ingredients

 \vec{G} [Font, Ibáñez, Lüst & Quevedo \[1990\]](#page-173-1); \vec{G} [Nilles & Olechowski \[1990\]](#page-176-0); \vec{G} [Cvetic, Font, Ibanez, Lüst & Quevedo \[1991\]](#page-172-1);...

☞ Modular covariant superpotential describing gaugino condensate

$$
\mathscr{W}_{\rm gc}(S,\tau)=\frac{\Omega(S)\,H(\tau)}{\eta^6(\tau)}
$$

[W](http://inspirehep.net/search?p=Dent:2001ut) [Dent \[2002\]](#page-172-2); [W](http://inspirehep.net/search?p=Kobayashi:2019xvz) [Kobayashi, Shimizu, Takagi, Tanimoto & Tatsuishi \[2019\]](#page-175-1); [W](http://inspirehep.net/search?p=Ishiguro:2020tmo) [Ishiguro, Kobayashi & Otsuka \[2021\]](#page-174-2) [W](http://inspirehep.net/search?p=Novichkov:2022wvg) [Novichkov, Penedo & Petcov \[2022\]](#page-176-1); [W](http://inspirehep.net/search?p=Ishiguro:2022pde) [Ishiguro, Okada & Otsuka \[2022\]](#page-174-3); [W](http://inspirehep.net/search?p=Leedom:2022zdm) [Leedom, Righi & Westphal \[2023\]](#page-175-2); talk by **Nicole Righi**

☞ Vacua away from the critical lines

[W](http://inspirehep.net/search?p=Leedom:2022zdm) [Leedom, Righi & Westphal \[2023\]](#page-175-2); talk by **Nicole Righi**

☞ Uplifting via Shenker terms

Involving matter fields

☞ Kähler and superpotential

[W](http://inspirehep.net/search?p=Knapp-Perez:2023nty) [Knapp-Perez, Liu, Nilles, Ramos-Sánchez & MR \[2023\]](#page-174-4)

$$
K = -\ln(S + \overline{S}) - 3\ln(-i\tau + i\overline{\tau})
$$

+ $(-i\tau + i\overline{\tau})^{-k_x}\overline{X}X - (-i\tau + i\overline{\tau})^{-2k_x}\frac{(\overline{X}X)^2}{\Lambda_{\text{ISS}}^2}$
ISS field
local description
of Coleman–Weinberg
potential

Involving matter fields

☞ Kähler and superpotential

[W](http://inspirehep.net/search?p=Knapp-Perez:2023nty) [Knapp-Perez, Liu, Nilles, Ramos-Sánchez & MR \[2023\]](#page-174-4)

$$
K = -\ln(S + \overline{S}) - 3\ln(-i\tau + i\overline{\tau})
$$

+ $(-i\tau + i\overline{\tau})^{-k_X}\overline{X}X - (-i\tau + i\overline{\tau})^{-2k_X}\frac{(\overline{X}X)^2}{\Lambda_{\text{ISS}}^2}$

$$
\mathscr{W} = \left(c_1 + c_2\eta^{2k_c}(\tau) - Be^{-bS} + f_X\eta^{2(k_Y + k_X)}(\tau)X\right)\frac{H(\tau)}{\eta^6(\tau)}
$$
all constants
induced by
induced by
matter fields
of various

modular weights

sma

 m_i

Fixing *τ* close to i

[W](http://inspirehep.net/search?p=Knapp-Perez:2023nty) [Knapp-Perez, Liu, Nilles, Ramos-Sánchez & MR \[2023\]](#page-174-4)

$$
(m,n) = (0,1)
$$
, $c_1 = 2 \cdot 10^{-8}$, $(k_c, k_X) = (1,0)$

$$
b = 10
$$
, $B = 1$, $\Lambda_{ISS} = 10^{-9}$

Stabilization of *τ*

☞ No matter fields, only *τ* , with or without uplift

Fixing *τ* close to i

[W](http://inspirehep.net/search?p=Knapp-Perez:2023nty) [Knapp-Perez, Liu, Nilles, Ramos-Sánchez & MR \[2023\]](#page-174-4)

$$
(m,n) = (0,1)
$$
, $c_1 = 2 \cdot 10^{-8}$, $(k_c, k_X) = (1,0)$

$$
b = 10
$$
, $B = 1$, $\Lambda_{ISS} = 10^{-9}$

Stabilization of *τ*

☞ Breaking of modular invariance by matter fields

Fixing *τ* close to i

[W](http://inspirehep.net/search?p=Knapp-Perez:2023nty) [Knapp-Perez, Liu, Nilles, Ramos-Sánchez & MR \[2023\]](#page-174-4)

$$
(m,n) = (0,1)
$$
, $c_1 = 2 \cdot 10^{-8}$, $(k_c, k_X) = (1,0)$

$$
b = 10
$$
, $B = 1$, $\Lambda_{ISS} = 10^{-9}$

Stabilization of *τ*

☞ Spontaneous breakdown of modular invariance by matter field and uplift

[Critical Aspects of Moduli Fixing](#page-0-0) Moduli Fixing in realistic string compactifications

Fixing τ close to $\omega := e^{2\pi i/3}$

[W](http://inspirehep.net/search?p=Knapp-Perez:2023nty) [Knapp-Perez, Liu, Nilles, Ramos-Sánchez & MR \[2023\]](#page-174-4)

☞ Kähler and superpotential

$$
K = -\ln(S + \overline{S}) - 3\ln(-i\tau + i\overline{\tau})
$$

+ $(-i\tau + i\overline{\tau})^{-k_X}\overline{X}X - (-i\tau + i\overline{\tau})^{-2k_X}\frac{(\overline{X}X)^2}{\Lambda_{\text{ISS}}^2}$

ISS field
local description of Coleman–Weinberg potential

[Critical Aspects of Moduli Fixing](#page-0-0) Moduli Fixing in realistic string compactifications

Fixing τ close to $\omega := e^{2\pi i/3}$

[W](http://inspirehep.net/search?p=Knapp-Perez:2023nty) [Knapp-Perez, Liu, Nilles, Ramos-Sánchez & MR \[2023\]](#page-174-4)

☞ Kähler and superpotential

$$
K = -\ln(S + \overline{S}) - 3\ln(-i\tau + i\overline{\tau})
$$

+ $(-i\tau + i\overline{\tau})^{-k_X}\overline{X}X - (-i\tau + i\overline{\tau})^{-2k_X}\frac{(\overline{X}X)^2}{\Lambda_{\text{ISS}}^2}$

$$
\mathscr{W} = \left(c_1 + c_2\eta^{2k_c}(\tau) - Be^{-bS} + f_X\eta^{2(k_Y + k_X)}(\tau)X\right)\frac{H(\tau)}{\eta^6(\tau)}
$$
small constants
induced by
matter fields
of various
modular weights

[Critical Aspects of Moduli Fixing](#page-0-0) Moduli Fixing in realistic string compactifications

Fixing τ close to $\omega := e^{2\pi i/3}$

[W](http://inspirehep.net/search?p=Knapp-Perez:2023nty) [Knapp-Perez, Liu, Nilles, Ramos-Sánchez & MR \[2023\]](#page-174-4)

☞ Kähler and superpotential

$$
K = -\ln(S + \overline{S}) - 3\ln(-i\tau + i\overline{\tau})
$$

+ $(-i\tau + i\overline{\tau})^{-k_X} \overline{X}X - (-i\tau + i\overline{\tau})^{-2k_X} \frac{(\overline{X}X)^2}{\Lambda_{\text{ISS}}^2}$

$$
\mathscr{W} = \left(c_1 + c_2 \eta^{2k_c}(\tau) - B e^{-bS} + f_X \eta^{2(k_Y + k_X)}(\tau)X\right) \frac{H(\tau)}{\eta^6(\tau)}
$$

 $(m, n) = (1, 0), c_1 = 2 \cdot 10^{-8}, c_2 = 0, b = 10, B = 1, k_c = 0, f_X = 0$
fixes

$$
\tau_{\text{AdS}}\simeq-0.48+0.88\,\mathrm{i}\ ,\ S\simeq2.15\ \text{and}\ \mathscr{V}\simeq-1.28\cdot10^{-12}<0
$$

Stabilization of *τ*

☞ No matter fields, only *τ*

Stabilization of *τ*

☞ Spontaneous breakdown of modular invariance by matter field

Fixing *τ* close to *ω*

[W](http://inspirehep.net/search?p=Knapp-Perez:2023nty) [Knapp-Perez, Liu, Nilles, Ramos-Sánchez & MR \[2023\]](#page-174-4)

$$
(m,n) = (1,0)
$$
, $c_1 = 2 \cdot 10^{-8}$, $c_2 = 0$, $b = 10$, $B = 1$, $k_c = 0$
 $\Lambda_{ISS} = 10^{-7}$, $k_X = 0$, $k_Y = 1$ and $f_X \simeq 6 \cdot 10^{-8}$

fixes

$$
\tau_{\text{dS}} \simeq -0.49 + 0.94 \text{ i and } S \simeq 2.16
$$

Stabilization of *τ*

☞ Spontaneous breakdown of modular invariance by matter field and uplift

Stabilization of *τ*

☞ Survey of all cases

Summary **Summary**
Odiningi A & **Outlook**

☞ Delicate interplay between perturbative and nonperturbative effects can fix the dilaton and the modulus *τ*

- ☞ Delicate interplay between perturbative and nonperturbative effects can fix the dilaton and the modulus *τ*
- ☞ Crucial ingredients:
	- **1** spontaneous breakdown of modular invariance when fields of nontrivial modular weights attain VEV

- ☞ Delicate interplay between perturbative and nonperturbative effects can fix the dilaton and the modulus *τ*
- ☞ Crucial ingredients:
	- **1** spontaneous breakdown of modular invariance when fields of nontrivial modular weights attain VEV
	- **2** positive contributions to the vacuum energy from (metastable) dynamical supersymmetry breaking

- ☞ Delicate interplay between perturbative and nonperturbative effects can fix the dilaton and the modulus *τ*
- ☞ Crucial ingredients:
	- **1** spontaneous breakdown of modular invariance when fields of nontrivial modular weights attain VEV
	- **2** positive contributions to the vacuum energy from (metastable) dynamical supersymmetry breaking
- ☞ Spontaneous breaking of modular invariance by matter fields unavoidable in explicit string models:
	- **1** cancellation of FI term
	- **2** breaking of extra gauge symmetries

- ☞ Loose ends:
	- **1** explicit stabilization of matter field VEVs

- ☞ Loose ends:
	- **1** explicit stabilization of matter field VEVs
	- **2** enhanced symmetries at critical points

☞ Loose ends:

- **1** explicit stabilization of matter field VEVs
- **2** enhanced symmetries at critical points
- **3** multiple moduli

- ☞ Loose ends:
	- **1** explicit stabilization of matter field VEVs
	- **2** enhanced symmetries at critical points
	- **3** multiple moduli
- ☞ Further insights from top-down models

- ☞ Loose ends:
	- **1** explicit stabilization of matter field VEVs
	- **2** enhanced symmetries at critical points
	- **3** multiple moduli
- ☞ Further insights from top-down models
- ☞ More precision

Thank you very much! **Thank you very much!**
I Hank *lon reli*t much!

Backup slides **Backup Slides**

- ☞ Discrete *R* symmetries arise as remnants of the Lorentz symmetry of compact dimensions and are arguably on the same footing as the fundamental symmetries C, P and T
- ☞ Example: order four discrete *R* symmetry \mathbb{Z}_4^R from \mathbb{Z}_2 orbifold plane

- ☞ Discrete *R* symmetries arise as remnants of the Lorentz symmetry of compact dimensions and are arguably on the same footing as the fundamental symmetries C, P and T
- ☞ Example: order four discrete *R* symmetry \mathbb{Z}_4^R from \mathbb{Z}_2 orbifold plane

☞ Discrete *R* symmetries arise as remnants of the Lorentz symmetry of compact dimensions and are arguably on the same footing as the fundamental symmetries C, P and T

☞ Discrete *R* symmetries arise as remnants of the Lorentz symmetry of compact dimensions and are arguably on the same footing as the fundamental symmetries C, P and T

☞ Discrete *R* symmetries arise as remnants of the Lorentz symmetry of compact dimensions and are arguably on the same footing as the fundamental symmetries C, P and T

☞ Discrete *R* symmetries arise as remnants of the Lorentz symmetry of compact dimensions and are arguably on the same footing as the fundamental symmetries C, P and T

☞ Example: order four discrete *R* symmetry \mathbb{Z}_4^R from \mathbb{Z}_2 orbifold plane localized fields have **odd** Z*^R* \sim \sum_{α} have **even** Z*^R* 4 charges

☞ Discrete *R* symmetries arise as remnants of the Lorentz symmetry of compact dimensions and are arguably on the same footing as the fundamental symmetries C, P and T

- ☞ Discrete *R* symmetries arise as remnants of the Lorentz symmetry of compact dimensions and are arguably on the same footing as the fundamental symmetries C, P and T
- ☞ Example: order four discrete *R* symmetry \mathbb{Z}_4^R from \mathbb{Z}_2 orbifold plane

- ☞ Discrete *R* symmetries arise as remnants of the Lorentz symmetry of compact dimensions and are arguably on the same footing as the fundamental symmetries C, P and T
- ☞ Example: order four discrete *R* symmetry \mathbb{Z}_4^R from \mathbb{Z}_2 orbifold plane

- ☞ Discrete *R* symmetries arise as remnants of the Lorentz symmetry of compact dimensions and are arguably on the same footing as the fundamental symmetries C, P and T
- ☞ Example: order four discrete *R* symmetry \mathbb{Z}_4^R from \mathbb{Z}_2 orbifold plane

- ☞ Discrete *R* symmetries arise as remnants of the Lorentz symmetry of compact dimensions and are arguably on the same footing as the fundamental symmetries C, P and T
- ☞ Example: order four discrete *R* symmetry \mathbb{Z}_4^R from \mathbb{Z}_2 orbifold plane

☞ Discrete *R* symmetries arise as remnants of the Lorentz symmetry of compact dimensions and are arguably on the same footing as the fundamental symmetries C, P and T

☞ Discrete *R* symmetries arise as remnants of the Lorentz symmetry of compact dimensions and are arguably on the same footing as the fundamental symmetries C, P and T

☞ Discrete *R* symmetries arise as remnants of the Lorentz symmetry of compact dimensions and are arguably on the same footing as the fundamental symmetries C, P and T

☞ Discrete *R* symmetries arise as remnants of the Lorentz symmetry of compact dimensions and are arguably on the same footing as the fundamental symmetries C, P and T

- ☞ Discrete *R* symmetries arise as remnants of the Lorentz symmetry of compact dimensions and are arguably on the same footing as the fundamental symmetries C, P and T
- ☞ Example: order four discrete *R* symmetry \mathbb{Z}_4^R from \mathbb{Z}_2 orbifold plane

- ☞ Discrete *R* symmetries arise as remnants of the Lorentz symmetry of compact dimensions and are arguably on the same footing as the fundamental symmetries C, P and T
- ☞ Example: order four discrete *R* symmetry \mathbb{Z}_4^R from \mathbb{Z}_2 orbifold plane

- ☞ Discrete *R* symmetries arise as remnants of the Lorentz symmetry of compact dimensions and are arguably on the same footing as the fundamental symmetries C, P and T
- ☞ Example: order four discrete *R* symmetry \mathbb{Z}_4^R from \mathbb{Z}_2 orbifold plane

- ☞ Discrete *R* symmetries arise as remnants of the Lorentz symmetry of compact dimensions and are arguably on the same footing as the fundamental symmetries C, P and T
- ☞ Example: order four discrete *R* symmetry \mathbb{Z}_4^R from \mathbb{Z}_2 orbifold plane

[Critical Aspects of Moduli Fixing](#page-0-0) *R* **[symmetries](#page-109-0)**

Interlude: Field theory vs. string theory

☞ In field theory it is hard to figure out whether or not localized states transform nontrivially under discrete rotations in compact dimensions **[Critical Aspects of Moduli Fixing](#page-0-0)** *R* **[symmetries](#page-109-0)**

Interlude: Field theory vs. string theory

- ☞ In field theory it is hard to figure out whether or not localized states transform nontrivially under discrete rotations in compact dimensions
- ☞ In string theory it follows from *H*-momentum conservation that localized (twisted) states have odd \mathbb{Z}_4^R charges while bulk (untwisted) have even \mathbb{Z}_4^R charges

Hierarchically small **⟨**W **⟩**

Two observations:

1 in the presence of an exact $U(1)_R$ symmetry

$$
\frac{\partial \mathscr{W}}{\partial \phi_i} = 0 \quad \curvearrowright \quad \langle \mathscr{W} \rangle = 0
$$

Hierarchically small **⟨**W **⟩**

Two observations:

0 in the presence of an exact $U(1)_R$ symmetry

Hierarchically small **⟨**W **⟩**

Two observations:

0 in the presence of an exact $U(1)_R$ symmetry

$$
\frac{\partial \mathscr{W}}{\partial \phi_i} = 0 \quad \curvearrowright \quad \langle \mathscr{W} \rangle = 0
$$

² for approximate *R* symmetries

$\langle W \rangle = 0$ because of $\mathrm{U}(1)_R$ (I)

aim: show that

$$
\frac{\partial \mathscr{W}}{\partial \phi_i} = 0 \qquad \curvearrowright \qquad \langle \mathscr{W} \rangle = 0
$$

$\langle W \rangle = 0$ because of $\mathrm{U}(1)_R$ (I)

aim: show that

$$
\frac{\partial \mathscr{W}}{\partial \phi_i} = 0 \qquad \curvearrowright \qquad \langle \mathscr{W} \rangle = 0
$$

Consider a superpotential

$$
\mathscr{W} = \sum c_{n_1 \cdots n_M} \phi_1^{n_1} \cdots \phi_M^{n_M}
$$

with an exact *R* symmetry

$$
\mathscr{W} \mapsto e^{2i\alpha} \mathscr{W} , \quad \phi_j \mapsto \phi'_j = e^{i\,r_j\,\alpha} \,\phi_j
$$

where each monomial in W has total R charge 2

[Critical Aspects of Moduli Fixing](#page-0-0) *R* **[symmetries](#page-109-0)**

$\langle W \rangle = 0$ because of $\mathrm{U}(1)_R$ (II)

Consider a field configuration ⟨*ϕi*⟩ with

$$
F_i = \frac{\partial \mathscr{W}}{\partial \phi_i} = 0 \quad \text{at } \phi_j = \langle \phi_j \rangle
$$

Under an infinitesimal $U(1)_R$ transformation, the superpotential transforms nontrivially

$$
\mathscr{W}(\phi_j) \mapsto \mathscr{W}(\phi'_j) = \mathscr{W}(\phi_j) + \sum_i \frac{\partial \mathscr{W}}{\partial \phi_i} \Delta \phi_i
$$

[Critical Aspects of Moduli Fixing](#page-0-0) *R* **[symmetries](#page-109-0)**

$\langle W \rangle = 0$ because of $\mathrm{U}(1)_R$ (II)

Consider a field configuration ⟨*ϕi*⟩ with

$$
F_i = \frac{\partial \mathscr{W}}{\partial \phi_i} = 0 \quad \text{at } \phi_j = \langle \phi_j \rangle
$$

Under an infinitesimal $U(1)_R$ transformation, the superpotential transforms nontrivially

$$
\mathscr{W}(\phi_j) \mapsto \mathscr{W}(\phi'_j) = \mathscr{W}(\phi_j) + \sum_i \frac{\partial \mathscr{W}}{\partial \phi_i} \Delta \phi_i
$$
[Critical Aspects of Moduli Fixing](#page-0-0) *R* **[symmetries](#page-109-0)**

$\langle W \rangle = 0$ because of $\mathrm{U}(1)_R$ (II)

Consider a field configuration ⟨*ϕi*⟩ with

$$
F_i = \frac{\partial \mathscr{W}}{\partial \phi_i} = 0 \quad \text{at } \phi_j = \langle \phi_j \rangle
$$

Under an infinitesimal $U(1)_R$ transformation, the superpotential transforms nontrivially

$$
\mathscr{W}(\phi_j) \mapsto \mathscr{W}(\phi'_j) = \mathscr{W}(\phi_j) + \sum_i \frac{\partial \mathscr{W}}{\partial \phi_i} \Delta \phi_i \stackrel{!}{=} e^{2i \alpha} \mathscr{W}
$$

This is only possible if $\langle W \rangle = 0!$

bottom-line:	
$\frac{\partial \mathcal{W}}{\partial \phi_i} = 0$	$\langle \mathcal{W} \rangle = 0$

O Statement $\langle W \rangle = 0$ holds regardless of whether $U(1)_R$ is unbroken (where it is trivial) or broken

O Statement $\langle W \rangle = 0$ holds regardless of whether $\mathrm{U}(1)_R$ is unbroken (where it is trivial) or broken

O Statement $\langle W \rangle = 0$ holds regardless of whether $\mathrm{U}(1)_R$ is unbroken (where it is trivial) or broken

O Statement $\langle W \rangle = 0$ holds regardless of whether $U(1)_R$ is unbroken (where it is trivial) or broken

O Statement $\langle W \rangle = 0$ holds regardless of whether $U(1)_R$ is unbroken (where it is trivial) or broken

 \bullet in 'no-scale' type settings

solutions of global SUSY *F* term eq.'s stationary points of supergravity scalar potential

Meinberg [1989]

☞ Consider now the case of an **approximate** *R* symmetry, i.e. explicit *R* symmetry breaking terms appear at order N in the fields ϕ_i

- ☞ Consider now the case of an **approximate** *R* symmetry, i.e. explicit *R* symmetry breaking terms appear at order N in the fields ϕ_i
- ☞ This allows us to avoid certain problems:
	- for a continuous $U(1)_R$ symmetry we would have
		- a supersymmetric ground state with $\langle W \rangle = 0$ and $\mathrm{U}(1)_R$ spontaneously broken
		- a problematic *R* Goldstone boson

- ☞ Consider now the case of an **approximate** *R* symmetry, i.e. explicit *R* symmetry breaking terms appear at order *N* in the fields ϕ_i
- ☞ This allows us to avoid certain problems:
	- for a continuous $U(1)_R$ symmetry we would have
		- a supersymmetric ground state with $\langle W \rangle = 0$ and $U(1)_R$ spontaneously broken
		- a problematic *R* Goldstone boson
	- however, for an **approximate** $U(1)_R$ symmetry one has
		- **Goldstone boson massive and harmless**
		- a nontrivial VEV of W at order *N* in *ϕ* VEVs

⟨W ⟩ ∼ ⟨*ϕ*⟩ *N*

- ☞ Consider now the case of an **approximate** *R* symmetry, i.e. explicit *R* symmetry breaking terms appear at order N in the fields ϕ_i
- ☞ This allows us to avoid certain problems:
	- for a continuous $U(1)_R$ symmetry we would have
		- a supersymmetric ground state with $\langle W \rangle = 0$ and $U(1)_R$ spontaneously broken
		- a problematic *R* Goldstone boson
	- however, for an **approximate** $U(1)_R$ symmetry one has
		- **•** Goldstone boson massive and harmless
		- a nontrivial VEV of W at order *N* in *ϕ* VEVs

⟨W ⟩ ∼ ⟨*ϕ*⟩ *N*

☞ Such an **approximate** U(1)*^R* symmetries can be a consequence of discrete \mathbb{Z}_N^R symmetries

- ☞ Consider now the case of an **approximate** *R* symmetry, i.e. explicit *R* symmetry breaking terms appear at order N in the fields ϕ_i
- ☞ This allows us to avoid certain problems:
	- for a continuous $U(1)_R$ symmetry we would have
		- a supersymmetric ground state with $\langle W \rangle = 0$ and $U(1)_R$ spontaneously broken
		- a problematic *R* Goldstone boson
	- however, for an **approximate** $U(1)_R$ symmetry one has
		- **Goldstone boson massive and harmless**
		- a nontrivial VEV of W at order *N* in *ϕ* VEVs

⟨W ⟩ ∼ ⟨*ϕ*⟩ *N*

- ☞ Such an **approximate** U(1)*^R* symmetries can be a consequence of discrete \mathbb{Z}_N^R symmetries
- ☞ Confirmed in various field-theoretic examples

Explicit Explicit string theory realization realization

Origin of high-power discrete *R* symmetries

☞ Discrete *R* symmetries arise as remnants of Lorentz symmetries of compact space

Origin of high-power discrete *R* symmetries

☞ Discrete *R* symmetries arise as remnants of Lorentz symmetries of compact space

■ Orbifolds break $SO(6) \simeq SU(4)$ Lorentz symmetry of compact space to discrete subgroups

Origin of high-power discrete *R* symmetries

☞ Discrete *R* symmetries arise as remnants of Lorentz symmetries of compact space

■ Orbifolds break $SO(6) \simeq SU(4)$ Lorentz symmetry of compact space to discrete subgroups

 $\mathbb{R}^{\mathbb{R}}$ For example: a \mathbb{Z}_2 orbifold plane leads to \mathbb{Z}_4^R symmetry

[W](http://inspirehep.net/search?p=Brummer:2010fr) [Brümmer, Kappl, MR & Schmidt-Hoberg \[2010\]](#page-172-0)

☞ Studied the previous example ('heterotic benchmark model IA') with 23 SM singlets *sⁱ* getting a VEV

[W](http://inspirehep.net/search?p=Brummer:2010fr) [Brümmer, Kappl, MR & Schmidt-Hoberg \[2010\]](#page-172-0)

- ☞ Studied the previous example ('heterotic benchmark model IA') with 23 SM singlets *sⁱ* getting a VEV
- ☞ *R* symmetry breaking terms appear at order 9

[W](http://inspirehep.net/search?p=Brummer:2010fr) [Brümmer, Kappl, MR & Schmidt-Hoberg \[2010\]](#page-172-0)

- ☞ Studied the previous example ('heterotic benchmark model IA') with 23 SM singlets *sⁱ* getting a VEV
- ☞ *R* symmetry breaking terms appear at order 9
- \mathbb{F} *D_a* = 0 as well as global $F_i = 0$ at order 9 explicitly solved

[W](http://inspirehep.net/search?p=Brummer:2010fr) [Brümmer, Kappl, MR & Schmidt-Hoberg \[2010\]](#page-172-0)

- ☞ Studied the previous example ('heterotic benchmark model IA') with 23 SM singlets *sⁱ* getting a VEV
- ☞ *R* symmetry breaking terms appear at order 9
- \mathbb{F} *D_a* = 0 as well as global $F_i = 0$ at order 9 explicitly solved
- \blacksquare Search for solutions $|s_i| < 1$, and find/argue that they exist

Note: in order to prove the existence a full understanding of coupling coefficients is required

[W](http://inspirehep.net/search?p=Brummer:2010fr) [Brümmer, Kappl, MR & Schmidt-Hoberg \[2010\]](#page-172-0)

- ☞ Studied the previous example ('heterotic benchmark model IA') with 23 SM singlets *sⁱ* getting a VEV
- ☞ *R* symmetry breaking terms appear at order 9
- \mathbb{F} *D_a* = 0 as well as global $F_i = 0$ at order 9 explicitly solved
- \blacksquare Search for solutions $|s_i| < 1$, and find/argue that they exist
- ☞ All fields acquire positive *m*²

(no flat directions; not destroyed by supergravity corrections)

[W](http://inspirehep.net/search?p=Brummer:2010fr) [Brümmer, Kappl, MR & Schmidt-Hoberg \[2010\]](#page-172-0)

- ☞ Studied the previous example ('heterotic benchmark model IA') with 23 SM singlets *sⁱ* getting a VEV
- ☞ *R* symmetry breaking terms appear at order 9
- \mathbb{R}^n $D_a = 0$ as well as global $F_i = 0$ at order 9 explicitly solved
- \blacksquare Search for solutions $|s_i| < 1$, and find/argue that they exist
- ☞ All fields acquire positive *m*² (no flat directions; not destroyed by supergravity corrections)
- ☞ Superpotential VEV ⟨W ⟩ ∼ ⟨*si*⟩ ⁹ ≪ 1 (as expected)

[W](http://inspirehep.net/search?p=Brummer:2010fr) [Brümmer, Kappl, MR & Schmidt-Hoberg \[2010\]](#page-172-0)

- ☞ Studied the previous example ('heterotic benchmark model IA') with 23 SM singlets *sⁱ* getting a VEV
- ☞ *R* symmetry breaking terms appear at order 9
- \mathbb{F} *D_a* = 0 as well as global $F_i = 0$ at order 9 explicitly solved
- \blacksquare Search for solutions $|s_i| < 1$, and find/argue that they exist
- ☞ All fields acquire positive *m*² (no flat directions; not destroyed by supergravity corrections)
- ☞ Superpotential VEV ⟨W ⟩ ∼ ⟨*si*⟩ ⁹ ≪ 1 (as expected)

bottom-line:

straightforward embedding in heterotic orbifolds

- ☞ The more fields are switched on, the lower *N* we obtain examples:
	- model with 23 fields $\sim N = 9$
	- model with 7 fields $\sim N = 26$

- ☞ The more fields are switched on, the lower *N* we obtain examples:
	- model with 23 fields $\sim N = 9$
	- model with 7 fields $\sim N = 26$

 \blacksquare Suppressed s_i in accord with scale set by [Fayet–Iliopoulos term](#page-0-1) (i.e. $\langle s_i \rangle$ ∼ 0.3)

- ☞ The more fields are switched on, the lower *N* we obtain examples:
	- model with 23 fields $\sim N = 9$
	- model with 7 fields $\sim N = 26$

 \blacksquare Suppressed s_i in accord with scale set by [Fayet–Iliopoulos term](#page-0-1) (i.e. ⟨*si*⟩ ∼ 0*.*3)

☞ One approximate Goldstone mode *η*

 $m_\eta \sim \langle \mathscr{W} \rangle / \langle s \rangle^2$ $\; \; \ldots$ somewhat heavier than the gravitino

- ☞ The more fields are switched on, the lower *N* we obtain examples:
	- model with 23 fields $\sim N = 9$
	- model with 7 fields $\sim N = 26$

 \blacksquare Suppressed s_i in accord with scale set by [Fayet–Iliopoulos term](#page-0-1) (i.e. ⟨*si*⟩ ∼ 0*.*3)

- ☞ One approximate Goldstone mode *η* $m_\eta \sim \langle \mathscr{W} \rangle / \langle s \rangle^2$ $\; \; \ldots$ somewhat heavier than the gravitino
- ☞ In most examples: all other *sⁱ* fields acquire masses ≫ *m^η* i.e. isolated points in s_i space with $F_i = D_a = 0$

- ☞ The more fields are switched on, the lower *N* we obtain examples:
	- model with 23 fields $\sim N = 9$
	- **e** model with 7 fields $\sim N = 26$

 \blacksquare Suppressed s_i in accord with scale set by [Fayet–Iliopoulos term](#page-0-1) (i.e. ⟨*si*⟩ ∼ 0*.*3)

- ☞ One approximate Goldstone mode *η* $m_\eta \sim \langle \mathscr{W} \rangle / \langle s \rangle^2$ $\; \; \ldots$ somewhat heavier than the gravitino
- ☞ In most examples: all other *sⁱ* fields acquire masses ≫ *m^η* i.e. isolated points in s_i space with $F_i = D_a = 0$
- ☞ Minima survive supergravity corrections

References I

- Joseph J. Atick, Lance J. Dixon, and Ashoke Sen. String Calculation of Fayet-Iliopoulos d Terms in Arbitrary Supersymmetric Compactifications. Nucl. Phys., B292:109–149, 1987. doi: 10.1016/0550-3213(87)90639-0.
- Pierre Binétruy, Stéphane Lavignac, and Pierre Ramond. Yukawa textures with an anomalous horizontal abelian symmetry. Nucl. Phys., B477:353–377, 1996.
- Robert H. Brandenberger and C. Vafa. Superstrings in the Early Universe. Nucl. Phys. B, 316:391–410, 1989. doi: 10.1016/0550-3213(89)90037-0.
- Felix Brümmer, Rolf Kappl, Michael Ratz, and Kai Schmidt-Hoberg. Approximate R-symmetries and the mu term. JHEP, 04:006, 2010. doi: 10.1007/JHEP04(2010)006.
- Mirjam Cvetic, A. Font, Luis E. Ibanez, D. Lüst, and F. Quevedo. Target space duality, supersymmetry breaking and the stability of classical string vacua. Nucl. Phys. B, 361:194–232, 1991. doi: 10.1016/0550-3213(91)90622-5.
- Thomas Dent. Breaking CP and supersymmetry with orbifold moduli dynamics. Nucl. Phys. B, 623:73–96, 2002. doi: 10.1016/S0550-3213(01)00629-0. [Erratum: Nucl.Phys.B 629, 493–493 (2002)].

References II

- Keith R. Dienes. String theory and the path to unification: A Review of recent developments. Phys. Rept., 287:447–525, 1997. doi: 10.1016/S0370-1573(97)00009-4.
- Michael Dine and Nathan Seiberg. Couplings and Scales in Superstring Models. Phys. Rev. Lett., 55:366, 1985. doi: 10.1103/PhysRevLett.55.366.
- A. Font, Luis E. Ibáñez, D. Lüst, and F. Quevedo. Supersymmetry breaking from duality invariant gaugino condensation. Phys. Lett., B245:401–408, 1990. doi: 10.1016/0370-2693(90)90665-S.
- Luis E. Ibáñez, Jihn E. Kim, Hans Peter Nilles, and F. Quevedo. Orbifold compactifications with three families of $SU(3) \times SU(2) \times U(1)$ ^{**}n. Phys. Lett., B191:282–286, 1987.
- Kenneth Intriligator, Nathan Seiberg, and David Shih. Dynamical SUSY breaking in meta-stable vacua. JHEP, 04:021, 2006.
- Kenneth A. Intriligator and Nathan Seiberg. Lectures on Supersymmetry Breaking. Class. Quant. Grav., 24:S741–S772, 2007. doi: 10.1088/0264-9381/24/21/S02.

References III

- Keiya Ishiguro, Tatsuo Kobayashi, and Hajime Otsuka. Landscape of Modular Symmetric Flavor Models. JHEP, 03:161, 2021. doi: 10.1007/JHEP03(2021)161.
- Keiya Ishiguro, Hiroshi Okada, and Hajime Otsuka. Residual flavor symmetry breaking in the landscape of modular flavor models. JHEP, 09:072, 2022. doi: 10.1007/JHEP09(2022)072.
- Shamit Kachru, Renata Kallosh, Andrei Linde, and Sandip P. Trivedi. De Sitter vacua in string theory. Phys. Rev., D68:046005, 2003. doi: 10.1103/PhysRevD.68.046005.
- Rolf Kappl, Hans Peter Nilles, Sául Ramos-Sánchez, Michael Ratz, Kai Schmidt-Hoberg, and Patrick K.S. Vaudrevange. Large hierarchies from approximate R symmetries. Phys. Rev. Lett., 102:121602, 2009.
- Victor Knapp-Perez, Xiang-Gan Liu, Hans Peter Nilles, Saúl Ramos-Sánchez, and Michael Ratz. Matter matters in moduli fixing and modular flavor symmetries. Phys. Lett. B, 844:138106, 2023. doi: 10.1016/j.physletb.2023.138106.

References IV

- Tatsuo Kobayashi, Yusuke Shimizu, Kenta Takagi, Morimitsu Tanimoto, and Takuya H. Tatsuishi. *A*⁴ lepton flavor model and modulus stabilization from *S*⁴ modular symmetry. Phys. Rev. D, 100(11):115045, 2019. doi: 10.1103/PhysRevD.100.115045. [Erratum: Phys.Rev.D 101, 039904 (2020)].
- Oleg Lebedev, Hans Peter Nilles, and Michael Ratz. de Sitter vacua from matter superpotentials. Phys. Lett., B636:126–131, 2006. doi: 10.1016/j.physletb.2006.03.046.
- Jacob M. Leedom, Nicole Righi, and Alexander Westphal. Heterotic de Sitter beyond modular symmetry. JHEP, 02:209, 2023. doi: 10.1007/JHEP02(2023)209.
- Liam McAllister and Fernando Quevedo. Moduli Stabilization in String Theory. 10 2023.
- Ann E. Nelson and Nathan Seiberg. R symmetry breaking versus supersymmetry breaking. Nucl. Phys., B416:46–62, 1994. doi: 10.1016/0550-3213(94)90577-0.
- Hans Peter Nilles. Dynamically broken supergravity and the hierarchy problem. Phys. Lett., B115:193, 1982.

References V

Hans Peter Nilles and M. Olechowski. Gaugino condensation and duality invariance. Phys. Lett., B248:268–272, 1990. doi: 10.1016/0370-2693(90)90290-M.

P. P. Novichkov, J. T. Penedo, and S. T. Petcov. Modular flavour symmetries and modulus stabilisation. JHEP, 03:149, 2022. doi: 10.1007/JHEP03(2022)149.

Saúl Ramos-Sánchez and Michael Ratz. Heterotic Orbifold Models. 1 2024.

- Yael Shadmi and Yuri Shirman. Dynamical supersymmetry breaking. Rev. Mod. Phys., 72:25–64, 2000. doi: 10.1103/RevModPhys.72.25.
- Steven Weinberg. The cosmological constant problem. Rev. Mod. Phys., 61: 1–23, 1989. doi: 10.1103/RevModPhys.61.1.
- Edward Witten. Dynamical Breaking of Supersymmetry. Nucl. Phys., B188:513, 1981. doi: 10.1016/0550-3213(81)90006-7.
- Edward Witten. Strong coupling expansion of calabi–yau compactification. Nucl. Phys., B471:135–158, 1996.